• 제목/요약/키워드: Box-Jenkins methodology

검색결과 8건 처리시간 0.023초

Box-Jenkins 모형을 이용한 표고버섯 가격예측 (Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology)

  • 민경택
    • 한국산림과학회지
    • /
    • 제95권6호
    • /
    • pp.778-783
    • /
    • 2006
  • 표고버섯의 재배와 출하 결정에서 단기 가격의 예측은 매우 중요하다. 표고버섯 가격의 형성에는 많은 요인들이 작용하고 있기 때문에 이를 구조모형으로 예측하는 것은 어려운 일이다. Box-Jenkins 방법을 이용한 표고버섯과 모형선정 과정에서 발생할 수 있는 오류를 줄이고 경우에 따라서는 더 높은 예측력을 가지기도 한다. 이 연구는 1992~2005년의 가락시장 표고버섯 중품 가격자료를 이용하여 시계열 분석 모형을 구축하고 단기 가격을 예측한 것이다. 그리고 분석에 포함되지 않은 2006년의 실제가격과 예측결과를 비교하였다. 분석 결과는 날씨 변화의 영향으로 시장에 교란이 발생하였던 시기를 제외하면 비교적 높은 정확도를 보여 주어 모형의 유용성을 시사한다.

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • 동아시아경상학회지
    • /
    • 제1권1호
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

A New Algorithm for Automated Modeling of Seasonal Time Series Using Box-Jenkins Techniques

  • Song, Qiang;Esogbue, Augustine O.
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.9-22
    • /
    • 2008
  • As an extension of a previous work by the authors (Song and Esogbue, 2006), a new algorithm for automated modeling of nonstationary seasonal time series is presented in this paper. Issues relative to the methodology for building automatically seasonal time series models and periodic time series models are addressed. This is achieved by inspecting the trend, estimating the seasonality, determining the orders of the model, and estimating the parameters. As in our previous work, the major instruments used in the model identification process are correlograms of the modeling errors while the least square method is used for parameter estimation. We provide numerical illustrations of the performance of the new algorithms with respect to building both seasonal time series and periodic time series models. Additionally, we consider forecasting and exercise the models on some sample time series problems found in the literature as well as real life problems drawn from the retail industry. In each instance, the models are built automatically avoiding the necessity of any human intervention.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • 동아시아경상학회지
    • /
    • 제3권3호
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.

대기상태를 고려한 단기부하예측에 관한 연구 (A study of short-term load forecasting in consideration of the weather conditions)

  • 김준현;황갑주
    • 전기의세계
    • /
    • 제31권5호
    • /
    • pp.368-374
    • /
    • 1982
  • This paper describes a combined algorithm for short-term-load forecating. One of the specific features of this algorithm is that the base, weather sensitive and residual components are predicted respectively. The base load is represented by the exponential smoothing approach and residual load is represented by the Box-Jenkins methodology. The weather sensitive load models are developed according to the information of temperature and discomfort index. This method was applied to Korea Electric Company and results for test periods up to three years are given.

  • PDF

A Future Economic Model: A Study of the Impact of Food Processing Industry, Manufacturers and Distributors in a Thai Context

  • Maliwan SARAPAB;Duangrat TANDAMRONG
    • 유통과학연구
    • /
    • 제21권7호
    • /
    • pp.65-71
    • /
    • 2023
  • Purpose: This study attempted to analyze the impacts of the backward linkage and output multipliers, and investigate the price fluctuation and the price forecast amongst the manufacturing sectors associated with food processing industrial output of Thailand. Research design, data and methodology: The Thailand Input-Output table with a size of 180 x 180 sectors from 2005, 2010, and 2015 was utilized while the secondary data of the time series from January 2002 to December 2021 were processed via a multiplicative model and Box-Jenkins model. Results: The backward linkage analysis indicates that canning and preserving of the meat sector majorly utilized the factors of production from the slaughtering sector; canning and preservation of fish and other seafoods sector largely used those factors from the ocean and coastal fishing sector; and the sugar sector used those of the sugarcane sector. Notably, the output multiplier analysis indicated that output multipliers of those 3 manufacturing sectors were highly increased; meanwhile the price fluctuation continually existed in all forms. Besides, the price forecast suggested that prices of chicken and sugarcane tended to be higher; whereas, the price of shrimp was unstable. Conclusions: Food processing industry contains the favorable components to be one of the industries of the future of Thailand.

베이지안 이산모형을 이용한 기술예측 (Technology Forecasting using Bayesian Discrete Model)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.179-186
    • /
    • 2017
  • 기술예측은 과거부터 현재까지의 기술개발 결과를 수집, 분석하여 특정 기술의 미래 추세 및 상태를 예측하는 것이다. 일반적으로 특허는 현재까지의 기술개발 결과를 가장 잘 가지고 있다. 왜냐하면 특허에 포함된 세부 기술은 일정기간 동안 배타적 권리가 법에 의해 보장되기 때문이다. 따라서 특허 데이터의 분석을 이용한 기술예측의 다양한 연구가 진행되었다. 특허문서의 분석을 위하여 널리 사용되는 특허 키워드 데이터는 주로 기술키워드에 대한 빈도 값으로 이루어진다. 기존의 많은 특허분석에서는 회귀분석, 박스-젠킨스 모형 등 연속형 데이터분석 기법이 적용하였다. 하지만 빈도 데이터는 이산형 데이터이기 때문에 이산형 데이터분석 방법을 사용해야 한다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여 베이지안 포아송 이산모형을 이용한 특허분석 방법을 제안한다. 연구방법의 성능평가를 위하여 지금까지 출원, 등록된 애플의 전체특허를 분석하여 향후 기술을 예측하는 사례분석을 수행한다.

여수연안 표면수온의 변동 특성과 시계열적 예측 (Fluctuations and Time Series Forecasting of Sea Surface Temperature at Yeosu Coast in Korea)

  • 성기탁;최양호;구준호;전상백
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권2호
    • /
    • pp.122-130
    • /
    • 2014
  • 한반도 여수연안($127^{\circ}37.73^{\prime}E$, $34^{\circ}37.60^{\prime}N$)의 46년(1965-2010년)간 월평균 표면수온의 계절변동과 장기변동추세를 파악하였으며, 시계열모형을 수립하여 향후 12개월의 표면수온을 예측하였다. 여수연안의 연평균 표면수온은 $15.6^{\circ}C$, 연진폭은 $9^{\circ}C$를 보이며, 연위상은 $236^{\circ}$로서 최고수온을 보이는 시기는 8월 26일경으로 나타났다. 장기적으로 여수연안 표면수온은 연간 약 $0.0305^{\circ}C$의 유의한 상승 추세를 가지며, 시기적으로 1981년부터 2010년까지 30년간의 상승 경향이 1966년부터 1995년까지 30년간의 상승 경향보다 현저하며, 계절적으로 겨울철의 상승 경향이 지배적으로 나타났다. 월평균 표면수온을 적합시켜 선택된 시계열모형은 $ARIMA(1,0,0)(2,1,0)_{12}$을 따르며, 수립된 모형에 의한 2010년 월평균 표면수온의 예측치는 8.3%의 평균절대백분율오차(Mean Absolute Percentage Error)를 수반하였다.