• Title/Summary/Keyword: Box-Cox transform

Search Result 4, Processing Time 0.017 seconds

Analysis of Multivariate Process Capability Using Box-Cox Transformation (Box-Cox변환을 이용한 다변량 공정능력 분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.2
    • /
    • pp.18-27
    • /
    • 2019
  • The process control methods based on the statistical analysis apply the analysis method or mathematical model under the assumption that the process characteristic is normally distributed. However, the distribution of data collected by the automatic measurement system in real time is often not followed by normal distribution. As the statistical analysis tools, the process capability index (PCI) has been used a lot as a measure of process capability analysis in the production site. However, PCI has been usually used without checking the normality test for the process data. Even though the normality assumption is violated, if the analysis method under the assumption of the normal distribution is performed, this will be an incorrect result and take a wrong action. When the normality assumption is violated, we can transform the non-normal data into the normal data by using an appropriate normal transformation method. There are various methods of the normal transformation. In this paper, we consider the Box-Cox transformation among them. Hence, the purpose of the study is to expand the analysis method for the multivariate process capability index using Box-Cox transformation. This study proposes the multivariate process capability index to be able to use according to both methodologies whether data is normally distributed or not. Through the computational examples, we compare and discuss the multivariate process capability index between before and after Box-Cox transformation when the process data is not normally distributed.

Improvement of Historical-Hanja Recognition Using a Nonlinear Transform of Contour Directional Feature Vectors

  • Kim, Min Soo;Kim, Jin Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.503-511
    • /
    • 2004
  • In Korea, OCR-based techniques have been developed for digital library construction of historical documents. In this paper, we propose the nonlinear transform of contour directional feature (CDF) vectors using log it and power transforms with skewness criterion to enhance the discriminant power. Experiments were conducted using samples from Seung-jung-won diaries (Diaries of King's Secretaries). Our results show that proposed method outperforms the others like Box-Cox transform in this database.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).