• Title/Summary/Keyword: Box-Benken design

Search Result 3, Processing Time 0.02 seconds

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

Process Optimization of Dextran Production by Leuconostoc sp. strain YSK. Isolated from Fermented Kimchi (김치로부터 분리된 Leuconostoc sp. strain YSK 균주에 의한 덱스트란 생산 조건의 최적화)

  • Hwang, Seung-Kyun;Hong, Jun-Taek;Jung, Kyung-Hwan;Chang, Byung-Chul;Hwang, Kyung-Suk;Shin, Jung-Hee; Yim, Sung-Paal;Yoo, Sun-Kyun
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1377-1383
    • /
    • 2008
  • A bacterium producing non- or partially digestible dextran was isolated from kimchi broth by enrichment culture technique. The bacterium was identified tentatively as Leuconostoc sp. strain SKY. We established the response surface methodology (Box-Behnken design) to optimize the principle parameters such as culture pH, temperature, and yeast extract concentration for maximizing production of dextran. The ranges of parameters were determined based on prior screening works done at our laboratory and accordingly chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 1, 5, and 9 g/l yeast extract. Initial concentration of sucrose was 100 g/l. The mineral medium consisted of 3.0 g $KH_2PO_4$, 0.01 g $FeSO_4{\cdot}H_2O$, 0.01 g $MnSO_4{\cdot}4H_2O$, 0.2 g $MgSO_4{\cdot}7H_2O$, 0.01 g NaCl, and 0.05 g $CaCO_3$ per 1 liter deionized water. The optimum values of pH and temperature, and yeast extract concentration were obtained at pH (around 7.0), temperature (27 to $28^{\circ}C$), and yeast extract (6 to 7 g/l). The best dextran yield was 60% (dextran/g sucrose). The best dextran productivity was 0.8 g/h-l.

The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers

  • Cho, Sangbuem;Mbiriri, David Tinotenda;Shim, Kwanseob;Lee, A-Leum;Oh, Seong-Jin;Yang, Jinho;Ryu, Chaehwa;Kim, Young-Hoon;Seo, Kang-Seok;Chae, Jung-Il;Oh, Young Kyoon;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1652-1662
    • /
    • 2014
  • The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a $4{\times}4$ Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at $30^{\circ}C$ and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle.