• Title/Summary/Keyword: Box Girder Bridge

Search Result 444, Processing Time 0.032 seconds

An Experimental Study on the Temperature Difference between the Top and Bottom Flange in Steel Girder without Concrete Slab (콘크리트 슬래브가 없는 강재주형에서 상하연 온도차에 대한 실측연구)

  • Shin, Dong-Wook;Kim, Kyoung-Nam;Jung, Kyoung-Sup;Lee, Seong-Haeng
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2014
  • In order to study the reasonable design thermal loads, the steel box girder bridge specimen which have no concrete slab was manufactured with the real size dimension. The temperature data were measured for 5 month at the 18 thermo gauges which were attached according to height. The temperature differences between the top and bottom flange in steel box girder specimen were calculated and the temperature gradient models were proposed by the probabilistic method. This proposed model showed a correlation of approximately 97% when compared with the similar model of Euro Code. Thus, the temperature gradient models which were suggested in this study may be used as the basis data in calculating the design load temperature.

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Selection of Optimal Model for Structural System Identification (SI기법 적용을 위한 최적 모델의 선택)

  • Kwak, Hyun-Seok;Kwon, Soon-Jung;Lee, Hae-Sung;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • A methodology of selecting an optimal model is proposed for applying a frequency-domain SI method effectively. Instead of using a reduced finite element model, a reasonably detail finite element model is established first and then the model is identified. To satisfy the identifiability criterion, a parameter grouping scheme is applied to control the number of unknowns. Among the simulated member grouping cases, an optimal model is selected as the one with the minimal statistical error. The proposed approach has been examined through simulation studies on a single span box-girder bridge.

Current Status and Analysis of PSC Bridge in Korea (국내 프리스트레스트 콘크리트 교량 현황조사 및 분석)

  • Son, Hyeok-Soo;Oh, Myung-Seok;Yoon, Cheol-Kyun;Kim, Ik-Su;Kim, Jin-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.23-24
    • /
    • 2010
  • In this research, the comparison and analysis of domestic prestressed concrete bridges were performed with major variations of superstructure type, and span lengths using the 'current status of roadbridge and tunnel' informations provided by MLTM and STATISTICS KOREA. As a result of analysis, steel box girder bridges with 50~100m span length represent about 76% of bridges, but prestressed concrete bridges represent a relatively smaller percentage. In order to replace steel box girder bridges with prestressed concrete bridges, it is necessary to develop prestressed concrete bridges with high-strength tendons and concrete.

  • PDF

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

The anti-corrosion study on the corrosion-sensitive areas of unpainted weathering steel bridges with closed box girder(I) (밀폐 박스거더형 무도장 내후성강 교량의 부식취약부에 대한 방식대책 연구(I))

  • Song, Chang-young;Lee, Eui-Ho;Lee, Jea-Hyun;Park, Hyun-Chul;Choi, Jae-Suk;Noh, Young-Tae
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.149-157
    • /
    • 2013
  • In corrosion-sensitive areas of exsisting unpainted weathering steel bridges with closed box girder structures. there are some serious local corrosion problems because of rain water or dew water which can not be solved by exsisting maintenance methods. These problems must be controled technically because of bad. influence on the safety of bridge. This study is the first stage of developing the economic corrosion control manual for these local corrosion problems. Through the injection of tar sealant into the crevice of mock-up equipment, it was prooved that the corrosive sealant can be useful to corrosion control at crevice of corrosion sensitive area.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Dynamic analysis of coupled train - ladder track - elevated bridge system

  • Xia, He;Deng, Yushu;Xia, Chaoyi;De Roeck, G.;Qi, Lin;Sun, Lu
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.661-678
    • /
    • 2013
  • As a new type of vibration reduction, the ladder track system has been successfully used in engineering. In this paper, a numerical model of the train-track-viaduct system is established to study the dynamic responses of an elevated bridge with ladder track. The system is composed of a vehicle submodel, a track submodel and a bridge submodel, with the measured track irregularities as the system self-excitation. The whole time histories of a train running through an elevated bridge with $3{\times}27m$ continuous PC box girders are simulated. The dynamic responses of the bridge such as deflections, lateral and vertical accelerations, and the vehicle responses such as derailment factors, offload factors and car-body accelerations are calculated. The calculated results are partly validated through the comparison with the experimental data. Compared to the common slab track, adapting the ladder sleeper can effectively reduce the accelerations of the bridge girder, and also reduce the car-body accelerations and offload factors of the train vehicle.