• Title/Summary/Keyword: Box Compression Strength (BCS)

Search Result 1, Processing Time 0.021 seconds

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.