• 제목/요약/키워드: Box Beam

검색결과 261건 처리시간 0.025초

하이드로포밍을 이용한 크래쉬박스형 범퍼스테이 제조기술 개발 (Development of Manufacturing Technology for Crash Box Type Bumper Stay with Hydroforming)

  • 손성만;이문용;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.38-42
    • /
    • 2005
  • A bumper comprises a bumper cover, a bumper beam for distributing the load from the impacts applied to the bumper cover and reinforcing the bumper, an absorber member interposed between the bumper cover and tile bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube is mainly considered to evaluate the hydro-formability and the shape of the tube is determined.

  • PDF

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo;Camotim, Dinar
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.223-243
    • /
    • 2010
  • This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub;Uy, Brian;Kim, Jin W
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.363-373
    • /
    • 2022
  • This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.

단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I) (Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection -)

  • 오세창;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제19권2호
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

쉘요소를 이용한 박판다실박스거더에서의 비틀림과 뒤틀림 해석기법 연구 (A Study of Torsional and Distortional Analysis of Thin-walled Multicell Box Girder Using Shell Elements)

  • 김승준;박종섭;김성남;강영종
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.71-74
    • /
    • 2007
  • Thin-walled multicell box girders subjected to an eccentric load can be produced the three global behaviors of flexure, torsion, and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces, we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is researched by Park, Nam-Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about thin-walled trapezoidal multi-cell section is insufficient. So, this paper deals with decomposition process and independent analysis method of multi-cell box girders include trapezoidal section.

  • PDF

섬유강화 복합재료 Box Tube의 동적 충격에너지 흡수거동 (Dynamic Crush Energy Absorption Characteristics of the Laminated Composite Box Tubes)

  • 강수춘;전완주
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.118-126
    • /
    • 1993
  • Static and dynamic crushing behaviors of composite box tube show the difference with those of metal tube. This paper investigates the characteristics of static and dynamic crushing test which were conducted to characterize the energy absorption and collapse mode of composite box tubes. Sixteen kinds of tube specimens were fabricated from[0/90] woven Glass/Epoxy fabric and autoclave cured. Axial crushing tests were performed using Instron and Dynatup Impact Tester. It is shown that collapse mode and energy absorption capacity can vary according to the aspect ratio, length, loading rate, lay-up direction of fabric, and trigger geometry of the composite box tube.

  • PDF

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • 제25권2호
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.

FRP 보강재의 Box 형상 설계 및 거동 평가에 관한 연구 (A Study on the Behavior Evaluation & Box Shape Designs of FRP Stiffeners)

  • 정우영;송영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.165-168
    • /
    • 2008
  • 본 연구에서는 철근콘크리트 구조물의 보강에 이용되는 유리섬유강화 복합재료(Glass Fiber Reinforced Polymer, GFRP) 형상에 관한 연구로서 콘크리트의 피복두께 및 FRP 보강재의 형상(Plate, Box)을 실험 변수로 하여 FRP 보강 철근콘크리트 보의 거동 평가 관한 연구를 수행하였다. 이를 위하여 본 연구에서는 T. J. Teng 등이 제안한 설계식을 이용하여 보강량을 결정하였고 기존의 FRP Plate 보강재의 성능개선을 위하여 FRP Sandwich box 보강재를 설계, 적용하여 보았다. 연구의 결과 예상과 달리 FRP Plate 보강재가 Sandwich box 보강재보다 보강효과가 우수한 것으로 조사되었으며, 이는 보강재 제작상의 한계점 및 core 재료가 너무 약하여 Sandwich box 보강재의 Top Plate와 Bottom Plate가 일체화 거동을 하지 못하여 나타난 결과로 사료된다.

  • PDF