• Title/Summary/Keyword: Box Beam

Search Result 261, Processing Time 0.023 seconds

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS FOR REACTION TO MOLAR UPRIGHTING SPRING (대구치 직립 스프링 적용시 반작용에 관한 삼차원 유한요소법적 연구)

  • Choe, Yoo-Kyung;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.61-74
    • /
    • 1998
  • The Purpose of this study was to investigate the stress distribution and tooth displacement at the initial phase produced by 5 types of molar uprighting springs using finite element method. The three dimensional finite element model of lower dentition, bone and springs was composed of 5083 elements and 2071 nodes. The results were as follows: 1. In case of helical spring and root spring, intrusion of lower canine and first premolar were observed md distal tipping, translation and extrusion of lower second molar were observed. 2. In case of T-loop, modified T-loop and box loop, intrusion and distal translation of lower second premolar were observed, and the largest crown distal tipping and translation of lower second molar were observed in T-loop and the smallest were observed in box loop. 3. In case of T-loop with cinch-bact crown distal tipping and translation of lower second molar were decreased, but extrusion was also decreased. 4. With increase of activation in T-loop, mesial translation and won distal tipping of lower second molar were increased and edentulous space was closing, but distal translation of second premolar was also increased. 5. With increase of tip-back bend in T--loop, distal tipping and translation of lower second molar were increased, but extrusion was also increased more largely.

  • PDF

Control of Lycoriella ingenua (Diptera: Sciaridae) in Exports of King Oyster Mushroom, Pleurotus eryngii, using Ionizing Radiation (이온화에너지를 이용한 수출용 큰느타리버섯의 긴수염버섯파리 방제)

  • Hyeonmo Ahn;Sun-Ran Cho;Hyun-Na Koo;Gil-Hah Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.333-343
    • /
    • 2023
  • King oyster mushrooms are one of the major fresh agricultural products which their exports are increasing every year in Korea. Lycoriella ingenua, is notorious insect pest in agriculture, especially in mushroom production. Larvae of L. ingenua cause mainly direct crop damage and adults are vectors of several dangerous fungal pathogens. In this study, the effects of electron beam, X-ray, and gamma-ray irradiation on the development and reproduction of L. ingenua were evaluated. In addition, to find the optimal dose to control L. ingenua in a box filled with king oyster mushrooms, an empirical experiment was conducted for each radiation. As a result, the development and reproduction of L. ingenua were inhibited at 50 Gy for all electron beam, X-ray, and gamma-ray irradiation. Additionally, at the top, middle, and bottom of the export box filled with king oyster mushrooms, the development and reproduction of L. ingenua were inhibited by electron beam with 150 Gy, X-ray with 100 Gy, and gamma-ray with 50 Gy. These results can be provided as basic data for establishing an integrated quarantine management system when exporting mushrooms. It will also contribute to the safety of agricultural products and the strengthening of export competitiveness.

Performance Analysis of DiffServ Networks for Providing (QoS 제공을 위한 차등서비스 망 성능분석)

  • Lim, Seog-Ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.448-451
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

Change of Sprouting-related Enzymes Activities and Food Quality Characteristics of Sweetpotato Root (Ipomea batatas Lam.) by Electron Beam Irradiation (전자빔 조사에 의한 고구마의 발아관련 효소의 활성과 식품특성 변화)

  • Lim, Sung Jin;Song, Mi Seon;Lee, Gyeong Ae;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.267-272
    • /
    • 2012
  • We investigated that electron beam irradiation is the effective method to control the sprouting of sweetpotato roots without changing of food quality characteristics. In 12 and $25^{\circ}C$ storage after electron beam irradiation, all control samples were sprouted from 6 and 4 weeks after storage, respectively. The sprouting rate of control increased with time and the rate reached to 11.2-12.4 and 70.5-74.2% at 8 weeks after 12 and $25^{\circ}C$ storage. Also, the sprouting of middle and below positioning sweetpotato roots at 12 and $25^{\circ}C$ storage after irradiation reached to 8.6-11.3 and 42.7-48.7% after a storage period of 8 weeks, respectively. However, the sprouting of all sweetpotato roots stored at $4^{\circ}C$ and upper (0-7 cm) positioning samples of box stored at 12 and $25^{\circ}C$ with electron beam was completely inhibited due to increase peroxidase and indole acetic acid (IAA) oxidase activity. Also, all samples with electron beam such as hardness, pH, sugar content, weight loss, and vitamin C and dacarotene content did not differ from that of the control. Therefore, if electron beam will be irradiated to sweetpotato roots above 0.1 kGy before packing, it will effectively inhibit their sprouting stored at $25^{\circ}C$ without the change of food quality characteristics.

An Experimental Evaluation of Structural Performance for the Beam to Column Joints in Unit Modular System (유닛 모듈러 기둥-보 조인트의 구조 성능에 대한 실험적 평가)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2013
  • The major goal of this study is to develop the industrialized structural system that can build high-rise buildings using the box-shaped steel frames such as a unit module system. In order to achieve such a goal, we need the advanced details for joints that consist in a single unit. Furthermore we also need to commercialize the unit modular building system through the basic experiments, research of theoretical analysis and the achievement of seismic performance. This study derived to develop the derails in the beam-to-column joint and to carry out structural performance test. Test results, a joint with thickness of 6.0T can be possible to maintain the plastic rotational angle for strength and seismic performance. Therefore, joint with thickness of 6.0T is able to apply when considering reinforcement in the local of stress concentration.

Comparison between cone beam computed tomography and magnetic resonance imaging of the temporomandibular joint (측두하악관절에 대한 cone beam형 전산화단층영상과 자기공명영상의 비교)

  • Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2008
  • Purpose : To compare and evaluate the diagnostic ability of cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI) of the temporomandibular joint (TMJ). Materials and Methods : CBCT and MRI of 46 TMJs of 23 patients with TMJ disorders were evaluated. They were divided into 3 groups according to the position of the articular disc of the TMJ at closed mouth position and the reduction of the disc during open mouth position on MRI: no disc displacement group (NDD), disc displacement with reduction group (DDR), and disc displacement without reduction group (DDWR). With PACS viewing soft-wares, position of mandibular condyle in the articular fossa, osseous change of mandibular condyle, shape of articular fossa, and mediolateral and anteroposterior dimensions of mandibular condyle were evaluated on CBCT and MRI. Each value was tested statistically. Results : The position of mandibular condyle in the articular fossa were concentric in the NDD, DDR, and DDWR of CBCT and NDD of MRI. However, condyle was positioned posteriorly in DDR and DDWR of MRI. Flattening, sclerosis and osteophyte of the mandibular condyle were much more apparent on DDR of CBCT than MRI. And the erosion of the condyle was much more apparent on DDWR of MRI than CBCT. Box and Sigmoid types of articular fossa were found most frequently in DDR of MRI. Flattened type was found most frequently in DDR of CBCT and deformed type was found most frequently in DDWR of CBCT. No significant difference in mediolateral and anteroposterior dimensions were shown on CBCT and MRI. Conclusion : Since MRI and CBCT has unique diagnostic imaging ability, both modalities should be used together to supplement each other to evaluate TMJ.

  • PDF

Cone-beam computed tomography-based radiographic considerations in impacted lower third molars: Think outside the box

  • Ali Fahd;Ahmed Talaat Temerek;Mohamed T. Ellabban;Samar Ahmed Nouby Adam;Sarah Diaa Abd El-wahab Shaheen;Mervat S. Refai;Zein Abdou Shatat
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • Purpose: This study aimed to evaluate the anatomic circle around the impacted lower third molar to show, document, and correlate essential findings that should be included in the routine radiographic assessment protocol as clinically meaningful factors in overall case evaluation and treatment planning. Materials and Methods: Cone-beam computed tomographic images of impacted lower third molars were selected according to specific inclusion criteria. Impacted teeth were classified according to their position before assessment. The adjacent second molars were assessed for distal caries, distal bone loss, and root resorption. The fourth finding was the presence of a retromolar canal distal to the impaction. Communication with the dentist responsible for each case was done to determine whether these findings were detected or undetected by them before communication. Results: Statistically significant correlations were found between impaction position, distal bone loss, and detected distal caries associated with the adjacent second molar. The greatest percentage of undetected findings was found in the evaluation of distal bone status, followed by missed detection of the retromolar canal. Conclusion: The radiographic assessment protocol for impacted third molars should consider a step-by-step evaluation for second molars, and clinicians should be aware of the high prevalence of second molar affection in horizontal and mesioangular impactions. They also should search for the retromolar canal due to its associated clinical considerations.

Comparison between Old and New Versions of Electron Monte Carlo (eMC) Dose Calculation

  • Seongmoon Jung;Jaeman Son;Hyeongmin Jin;Seonghee Kang;Jong Min Park;Jung-in Kim;Chang Heon Choi
    • Progress in Medical Physics
    • /
    • v.34 no.2
    • /
    • pp.15-22
    • /
    • 2023
  • This study compared the dose calculated using the electron Monte Carlo (eMC) dose calculation algorithm employing the old version (eMC V13.7) of the Varian Eclipse treatment-planning system (TPS) and its newer version (eMC V16.1). The eMC V16.1 was configured using the same beam data as the eMC V13.7. Beam data measured using the VitalBeam linear accelerator were implemented. A box-shaped water phantom (30×30×30 cm3) was generated in the TPS. Consequently, the TPS with eMC V13.7 and eMC V16.1 calculated the dose to the water phantom delivered by electron beams of various energies with a field size of 10×10 cm2. The calculations were repeated while changing the dose-smoothing levels and normalization method. Subsequently, the percentage depth dose and lateral profile of the dose distributions acquired by eMC V13.7 and eMC V16.1 were analyzed. In addition, the dose-volume histogram (DVH) differences between the two versions for the heterogeneous phantom with bone and lung inserted were compared. The doses calculated using eMC V16.1 were similar to those calculated using eMC V13.7 for the homogenous phantoms. However, a DVH difference was observed in the heterogeneous phantom, particularly in the bone material. The dose distribution calculated using eMC V16.1 was comparable to that of eMC V13.7 in the case of homogenous phantoms. The version changes resulted in a different DVH for the heterogeneous phantoms. However, further investigations to assess the DVH differences in patients and experimental validations for eMC V16.1, particularly for heterogeneous geometry, are required.

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.