• 제목/요약/키워드: Bow collision

검색결과 29건 처리시간 0.018초

선수부 설계시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Design)

  • 신영식;박명규
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.219-231
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effects of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

선수 충돌시 구조 붕괴 거동에 대한 수치해석(제1보) (Numerical Simulation of Structural Response in Bow Collision (1st Report))

  • 박명규
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.28-35
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy transmission to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against heat on collision. At present the bow structure is normally designed in consideration of its specific structural arrangement and internal and external loads in these areas such as hydrostatic and dynamic pressure wave impact and bottom slamming in accordance with the Classification rules and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits and by the results of these simulation it provides the optimal design concept for the bow construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

선수 충돌시 구조거동과 충돌격벽에 미치는 영향 (Collision Response of Bow Structure and Its Affected Collision Bulkhead in Bow Collision)

  • 신영식;박명규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.195-204
    • /
    • 2000
  • In this paper a complicated structural behavior in collision and its effect of energy translation to the collision bulkhead was examined through a methodology of the numerical simulation to obtain a ideal bow construction and a location of collision bulkhead against head on collision. In the present the bow structure is normally designed in consideration of its specific structural arrangements and internal and external loads in these area such as hydrostatic and dynamic pressure, wave impact and bottom slamming in accordance with the Classification rules, and the specific location of collision bulkhead by SOLAS requirement. By these studies the behavior of the bow collapse due to collision was synthetically evaluated for the different size of tankers and its operational speed limits, and by the result of these simulation it provides the optimal design concept for the low construction to prevent the subsequent plastic deformation onto or near to the collision bulkhead boundary and to determine the rational location of collision bulkhead.

  • PDF

유조선 선수부의 내충돌 구조설계에 관한 연구 -이상화 모델의 충돌거동 분석(1) (A study on the Crashworthiness Design of Bow Structure of Oil Carriers -Collision Behaviour of Simplified Models(1))

  • 신영식;박명규
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.120-127
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulations. During a few decades, the great effort has been made by the international Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study aims for investigating a complicated structural response of bow structures of simplified models and oil carriers for assessing the energy dissipation and crushing mechanics of the striking vessels through a methodology of the numerical analysis for the various models and its design changes. Through these study an optimal bow construction absorbing great portion of kinetic energy at the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of collision simulation procedures have been performed step by step as follows; 1) 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in four conditions. 2) 21 models consisted of 5 sizes of the full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3) 36 models of 100l oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary members, framing system and colliding conditions, etc. By the first study using simplified models the response of the bow collision is synthetically evaluated for the parameters influencing to the absorbed energy, penetration depth and impact force, etc.

  • PDF

선수 충돌 상황별 손상거동에 관한 연구 (A Study on the Extents of Damage of a Bow Structure According to Collision Scenario)

  • 김귀미;김근원;신기수
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.266-271
    • /
    • 2012
  • The rescue methods for the marine casualties are limited due to the characteristics of operation environment of the vessel. Especially the most of marine accidents have been occurred at the bow structure of ship. Moreover the failure of bow structure may lead to catastrophic mishaps. In this paper, the extents of damage of a bow structure fracture subject to collision accident was investigated by using numerical method. The computer simulation approach by using Finite Element Method was employed to accomplish this goal. A finite element model, a 3D model of ship, has been utilized to evaluate damage of bow structure according to collision scenario. In conclusion, we have demonstrated that the plastic deformation occurred at the bow structure. Also it was shown that the collision angle clearly plays a role in determining amount of damage of ship structures.

유조선 선수부의 내충돌 구조설계에 관한 연구 (A Study on the Crashworthiness Design of Bow Structure of Oil Carriers)

  • 신영식;박명규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.119-126
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulation. During a few decades, the great effort has been made by International Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study is aimed at investigating a complicated structural response of bow structures of oil carriers for assessing the energy dissipation and crushing mechanics of striking vessel through a methodology of the numerical analysts for the various models and its design changes. Through this study an optimal bow construction absorbing great portion of kinetic energy in the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of response analysis procedures are performed as follows; 1). 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in two conditions. 2). 21 models conisted of 5 size of full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3). 36 models of 100k oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary mombers, framing system and colliding conditions, etc.

  • PDF

파일형 선박 충돌방호공의 거동특성 연구 (Study on Behavior Characteristics of a Pile-Type Vessel Collision Protective Structure)

  • 이계희;이정우
    • 한국재난정보학회 논문집
    • /
    • 제7권1호
    • /
    • pp.75-85
    • /
    • 2011
  • 본 논문에서는 파일형 선박충돌방호공에 선박이 충돌하였을 때 거동을 해석하였다. 충돌방호공은 슬래브, RCP말뚝 및 이를 지지하는 지반을 비선형스프링으로 모델링하였다. 선박의 선수는 탄소성거동을 하는 쉘요소로 모델링하였으며, 선체부는 충격 시 변형이 크게 발생하지 않으므로 선형재료로 고체요소를 이용하여 모델링을 하였다. 선박의 중량의 변화에 따른 거동특성을 파악하기 위해 선박의 질량을 DWT 10000 부터 DWT 25000까지 5000씩 증가시켜 해석을 수행하였다. 또한 선박과 방호공의 충돌은 정면충돌로 고려하였으며, 충돌 속도는 5knot로 가정하였다. 선박과 방호공과의 충돌 해석은 비선형 해석 프로그램인 ABAQUS/Explicit을 이용하여 수행하였으며, 이를 통하여 선박 충돌 시 방호공의 에너지 거동을 분석하였다. 해석결과 선박의 중량이 증가할수록 선수와 슬래브의 변형에 의한 소성 소산 에너지량이 증가하는 것을 확인할 수 있었다.

교각에 작용하는 설계선박충돌력 산정에 관한 연구 I : 평균충돌력 (A Study for the Evaluation of Ship Collision Forces for the Design of Bridge Pier I : Mean Collision Force)

  • 이계희;홍관영
    • 대한토목학회논문집
    • /
    • 제31권3A호
    • /
    • pp.199-206
    • /
    • 2011
  • 현재 국내에서 사용되고 있는 교량의 선박충돌력에 대한 설계기준은 Woisin의 실험으로부터 제안된 평균충돌력을 적용한 AASHTO LRFD에 기반을 두고 있다. 이러한 평균충돌력의 보수성을 평가하기 위하여, 본 연구에서는 비선형 유한요소해석을 토대로 선박의 질량-가속도의 관계, 선수의 변형-운동에너지의 관계를 이용하여 선수충돌시 발생하는 평균충돌력을 산정하고 이를 AASHTO 설계기준과 비교하였다. 그 결과, 선박의 크기에 따른 평균충돌력의 변화는 해석에서 얻어진 평균충돌력에 비해 매우 보수적이지만 경향은 일치하는 것으로 나타났다. 그러나 속도에 따른 평균충돌력의 변화는 충돌속도에 비례하는 설계기준의 값과는 달리 선수의 소성거동에 지배를 받는 것으로 나타났다.

돌핀방호공의 선박충돌해석 (The ship collision analysis of dolphin protection system)

  • 이계희;이성로;고재용;유원진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 2005
  • In this study, to evaluate the collision behaviors of the navigating vessel and the dolphin protective system protecting the substructures of bridges, the numerical simulation was performed. The analysis model of vessel bow that the plastic deformations are concentrated was composed by shell elements, and the main body of vessel was modeled by beam elements to represent the mass distribution and the change of potential energy. The material model reflecting the confining condition was used for the modeling of the filling soil of dolphin system. The surrounding soil of the dolphin system was modeled as nonlinear springs. As results, it is verified that the dolphin system can adequately dissipate the kinematic energy of the collision vessel. The surrounding soil of the dolphin system is able to resist the collision force of the vessel. And the major energy dissipation mechanism of collision energy is the plastic deformation of the vessel bow and the dolphin system.

  • PDF

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF