• Title/Summary/Keyword: Bovine Fetal Fibroblast Cells

Search Result 43, Processing Time 0.025 seconds

Cell Cycle Analysis of Bovine Cultured Somatic Cells by Flow Cytometry

  • H.T. Cheong;D.J. Kwon;Park, J.Y.;J.W. Cho;Y.H. Yang;Park, T.M.;Park, C.K.;B.K. Yang;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.69-69
    • /
    • 2001
  • The cell cycle phase in which donor nuclei exist prior to nuclear transfer is an important factor governing developmental rates of reconstituted embryos. It was suggested that quiescent G0 and cycling G1 cells could support normal development of reconstituted embryos. In a quest of optimized donor nuclei treatment prior to nuclear transfer, this study was undertaken to examine the cell cycle characteristics of bovine fetal and adult somatic cells when cultured under a variety of culture treatments and the cell cycle change with the lapse of time after trypsinization. This was archived by measuring the DNA content of cells using flow cytometry, Cultured fetal fibroblast cells, adult skin and muscle cells, and cumulus cells were divided by 3 culture treatments; 1) grown to 60-70% confluency (cycling), 2) serum starved culture, 3) culture to confluency. Trypsinized cells were fixed by 70% ethanol and stained with propidium iodide. For one experiment, trypsinized cells were resuspended in DMEM+10% FBS and incubated for 1.5, 3 and 6 h with occasional shaking before ethanol fixation. Cell cycle phases were determined by flow cytometry enabling calculation of percentages of G0+G1, S and G2+M. The majority of cells were in G0+Gl stage regardless of origin of cells. Cultures that were serum starved or cultured to confluency contained significantly (P<0.05) higher percentages of cells in G0+G1 (89.5-95.4%). For every cell lines and culture treatments, percentages of cells in existing in G0+G1 increased with decreasing of the cell size from large to small. In the serum starved and confluency groups, about 98% of small cells were in G0+G1 Serum starved culture contained higher percentages of small-sized cells (38.5-66.9%) than cycling and confluent cultures regardless of cell lines (P<0.05). After trypsinization of fetal fibroblast and adult skin cells that were serum starved and cultured to confluency, the percentages of cells in G0+G1 significantly increased by incubation for 1.5(95.7-99.5%) and 3.0 h (95.9-98.6%). The results suggest that the efficient synchronization of bovine somatic cells in G0+G1 for nuclear transfer can be established by incubation for a limited time period after trypsinization of serum starved or confluent cells.

  • PDF

Effect of Quiescent Treatment on Nuclear Remodeling and In Vitro Development of Nuclear Transfer Embryos Derived from Bovine Fetal Fibroblast Cells (세포의 휴면처리가 소 태아섬유아세포 유래 핵이식란의 핵상변화와 체외발육에 미치는 영향)

  • 최종엽;권대진;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.217-222
    • /
    • 2000
  • This study was conducted to investigate the effect of quiescent treatment of the donor cells on the nuclear remodeling and in vitro development of fetal fibroblast cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling fetal fibroblast cells were transferred into the enucleated oocytes. About 20∼25% of nuclear transfer embryos fused with a serum starved or confluent cell extruded a polar body, which was slightly lower than that of nontreated control (36%). About 49∼51% of nuclear transfer embryos fused with a serum starved or confluent cell had a single chromatin clump, which was slightly higher than that of nontreated control (40%). The proportion of embryos with a single chromatin clump was significantly higher (P<0.01) in nuclear transfer embryos without showing a polar body (60.5%) than with a polar body (4.7%). Development rates to the blastocyst stage were 21.7% and 20.9% when serum starved and confluent cells were transferred, which were slightly higher than that of control (14.1 %). The result of this study suggests that quiescent treatment by serum starvation or growth to confluency of donor cells could increase the number of embryos with a normal chromatin structure, which results in increased in vitro development.

  • PDF

Assessements of Apoptosis in Bovine Embryos Reconstructed with Fetal Fibroblast

  • Lee, S. L.;Park, G.;S. Y. Choe
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.136-136
    • /
    • 2003
  • Mainly due to deficiencies in nuclear reprogramming, gene expression and DNA fragmentation, which result in early and late embryonic losses, the overall success rate achieved by cloning techniques to date is low. This present study compared the incidences of DNA fragmentation during development of IVF, parthenotes (PT), nuclear transfer (NT) and transgenic (TG) embryos. Terminal deoxynucleotidyl transferase (TdT) nick-end labelling (TUNEL) with propidium iodide counter staining was used for determination of DNA fragmentation and total number, respectively. TG and NT donor cells were fetal fibroblasts with or without transfection with EGFP, and cultured in DMEM+15% FCS until confluent, for 5 days. At 19 h post-maturation (hpm), enucleated oocytes were reconstructed with donor cells and activated at 24 hpm with the combinations of ionomycin (5 M, 5 min) and cyclo-heximide (10 g/ml, 5 h) after electric fusion by a single DC pulse (1.6 KV/cm, 60 sec). Parthenotes were produced by the same activation protocol at 24 hpm. (중략)

  • PDF

Development of Bovine Embryos Reconstructed by Microinjection of Cultured Fetal Fibroblast Cells into In-Vitro Matured Oocytes

  • Kim, Sungmin;Kim, Sangkeun
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.41-41
    • /
    • 2002
  • Bovine cumulus-oocyte complexes were recovered from ovaries at a slaughter and then divided into five groups: control group(unvitrified oocytes), 0 hr. group(composed of oocytes vitrified before the onset of maturation) and 10, 14, and 20 hrs groups(vitrified respectively at 10, 14 and 20 hrs after the onset of maturation). The oocytes remained vitrified for 24 hrs, and then were thawed in 30℃ water bath. Survival and cleavage rates were defined as development rate on in vitro culture and stained with aceto-orcein or FDA test.

  • PDF

In Vitro Development of Bovine Nuclear Transfer Embryos Reconstructed with Fetal Fibroblasts (태아 섬유아세포로 재구성된 핵치환 소 수정란의 체외발달)

  • Koo, D.B.;Choi, Y.H.;Park, J.S.;Kim, H.N.;Kang, Y.K.;Lee, C.S.;Han, Y.M.;Park, H.D.;Lee, K.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • The present study was to examine effects of various electrical stimulus treatments used for electro-fusion on the preimplantation development of bovine nuclear transfer (NT) embryos with fetal fibroblast cells. Fetal fibroblast cells were isolated from one fetus at day 45 of gestation in Holstein cow, and passaged 3 to 4 times before being transferred into enucleated oocytes. Single fibroblast cells were individually placed into the perivitelline space of enucleated oocytes by using a micromanipulator. At first, the fusion and developmental rates of reconstructed oocytes were compared between different electric stimulation conditions. When fusion of the reconstructed oocyte was induced by different electric pulse periods (15, 30 and 45 $\mu$sec) at a DC pulse of 1.8 kV/cm, 15 (45.5%, 120/264) or 30 $\mu$ sec group (43.9%, 106/241) showed a higher fusion rate than 45 $\mu$sec group (23.2%, 58/250, P<0.05). However, no difference was detected in the development rate of the fused oocytes to blastocysts between groups. Next experiment was to examine the effects of different electrical field strengths (1.5, 1.8 and 2.1 kV/cm) for 15 $\mu$sec at electrofusion on in vitro development of the NT embryos. As results, there was no difference in the fusion and developmental rates of the NT embryos between electrical strength (P>0.05). Finally, developmental competence of bovine NT embryos with somatic cells was compared with IVF-derived embryos. Of enucleated oocytes fused with fibroblast cells, 27.4% (75/274) developed to the blastocyst stage, which is similar to that (24.5%, 58/237) of IVF-derived embryos. However, mean nuclei number of NT blastocysts was smaller than that of IVF-derived blastocysts. Thus, we have established an optimal condition (1.8 kV/cm, 15 $\mu$sec) for electric fusion of bovine NT oocytes with somatic cells. The present study indicates that bovine reconstructed embryos with somatic cells normally develop to blastocyst stage in vitro, although having smaller nuclei numbers of blastocysts as compared to IVF-derived embryos.

  • PDF

Effect of Serum Media on Fibroblast Proliferation and Collagen Synthesis (배양 혈청이 섬유아세포의 증식 및 교원질합성에 미치는 영향)

  • Lee, Min Ah;Seo, Sung Ig;Han, Seung Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.4
    • /
    • pp.529-532
    • /
    • 2005
  • Expanding cells ex-vivo is very important in tissue-engineering. Culture medium is usually supplemented with fetal bovine serum(FBS) in most of the experiments. However, cells grown in bovine serum media may posses the possibilities of disseminating bovine diseases and/or stimulating the patient's immune reactions. To overcome these problems, autologous or homologous serum should be used instead of the FBS. The purpose of this study is to compare cell proliferation and collagen synthesis depending on the kind of sera mixed on media and to provide a guideline on applying established experimental data to clinical cases. Human dermal fibroblasts were obtained from four patients. Five thousand cells per well in 96-well plates were incubated DMEM/F-12 Nutrient with varying serum mixture; 10% autologous serum, 10% homologous serum, and 10% FBS. Five days after incubation fibroblast proliferation and collagen production were determined by MTT assay and CICP enzyme immunoassay. The mean cell number were; $3.95{\times}10^4/well$, $2.97{\times}10^4/well$ and $2.30{\times}10^4/well$, respectively. The average amounts of collagen synthesized were; 238.13 ng/ml, 204.88 ng/ml, and 163.88 ng/ml in each. These results show that the use of human serum mixture may contribute to, not only preventing disseminated infection of bovine diseases. but also increase cell proliferation and collagen synthesis without simulating the patient's immune reactions.

The Effect of Lipid Concentration in Culture Medium on Senescence and Lipid Peroxides Production of Fibroblast from Neonate Rats (배양액내 지방함량의 변화가 신생흰쥐 피부섬유아세포의 노화와 지질과산화물 생성에 미치는 영향)

  • 장영애
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.97-103
    • /
    • 1996
  • This study was performed to investigate the effects of lipid on cellular senescence, lipid peroxide production, and morphological changes. For this study we used primary skin fibroblasts from neonate rats grown in media various lipid contents. Fibroblasts were cultured until they lost their proliferation potential either in control medium (Dulbecco's modified Eagle's medium supplement with 10% fetal bovine serum) or in media supplemented with various concentrations of lipid-cholesterol rice component from bovine serum. Cumulative population doublings(CPD, as an index of cellular life span), and cellular thiobarbituric acid reactive substances (TBARS, as an index of lipid peroxide) concentrations were measured and morphological changes were observed. CPD were shortened with increasing lipid concentration in media ; 28.12 for cells grown in control medium and 13.42, 11.42, and 6.19 for those grown in 0.1%, 1% and 5% lipid rich components containing media, respectively. Cellular proliferation ratios were those grown in 5% lipid rich components containing media were delayed and they were degenerated soon. TBARS concentrations were increased with increasing concentration of lipid in media. Morphological changes were observed in cells grown in control medium by cellular senescence. Especially lipid droplets were observed in cells grown in 5% lipid rich components containing media. Therefore it seems that lipid contents in media had an effect on cellular proliferation and cellular life span, possibly via lipid peroxide production.

  • PDF

Effect of Fusion Method and Passage Culture of Hanwoo (Korean Cattle) Ear Skin and Fetal Fibroblasts on the Development of Nuclear Transfer Embryos (한우의 귀세포와 태아섬유아세포의 융합 방법과 Passage 배양이 복제수정란의 발달에 미치는 영향)

  • Yang Byoung-Chul;Im Gi-Sun;Lee Sang-Ki;Kim Se-Woong;Kim Dong-Hoon;Seong Hwan-Hoo;Yang Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The study was conducted to evaluate the effects of culture period and fusion method on the development of somatic cell nuclear transfer (SCNT) embryos reconstituted with Korean bovine fetal fibroblast cells (KbFF) and Korean bovine adult ear skin fibroblast cells (KbESF). KbFF were isolated from a day 51 Korean cattle (Hanwoo) fetus, and KbESF were isolated from a 28 month old Hanwoo calf. The cells were cultured up to 15 weeks (passage 15) in vitro for SCNT. Chamber and electrode needles were used for comparing fusion of reconstituted eggs. The doubling times of KbFF and KbESF were 17.3 hr and 24.3 hr, respectively. The fusion and cleavage rates were significantly higher in needle group (76.1 and 81.2% respectively, P<0.05) than those in chamber group. However, the blastocyst development rate was not different between both groups. Fusion and cleavage rates of NT eggs reconstituted with KbESF did not affected by passage number, however, blastocyst rates were lower in passage $1{\sim}4$ group (21.3%) than passage $5{\sim}8$ (39.4%) and $13{\sim}15$ groups (40.4%, P<0.05). Whereas, fusion rate was lower in passage $1{\sim}4$ group (61.5%) than those of passage $5{\sim}8$(75.0%) and $13{\sim}15$ (76.8%) groups, but cleavage and blastocyst rates were similar regardless of passage number in the KbFF. The results suggest that fusion method can affect the development of SCNT embryos, whereas the long term culture up to 15 passages may not affect the development of SCNT embryos.

Variable Effect of Estrogen on Fibroblast Proliferation and Collagen Synthesis by Gender and Age (에스트로겐이 진피섬유아세포의 증식 및 교원질합성에 미치는 영향의 다양성)

  • Shin, Seung Han;Won, Chang Hoon;Han, Seung Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.363-368
    • /
    • 2005
  • It was assumed that the effect of estrogen on wound healing would be variable according to patient's gender and age since estrogen is a sex steroid. This study was designed to determine the variability of the effect of estrogen on proliferation of human dermal fibroblasts and collagen synthesis which are most important in wound healing considering patient's gender and age. Fibroblasts were isolated from the dermis of female patients in premenstrual, menstrual, or postmenopausal age group and that of male patients. The isolated fibroblasts were cultivated in the presence of estrogen($1.0{\mu}g/ml$). The cells were seeded at $5.0{\times}10^3cell/well$ in Dulbecco's Modified Eagle's Medium/Ham's F-12 nutrient including 5% fetal bovine serum in 96-well plates. The cells were incubated for 3 days. For fibroblast proliferation MTT assay method was used. To measure the production of collagen, the collagen type I carboxy- terminal propeptide enzyme immunoassay was carried out. Estrogen stimulated the proliferation of fibroblasts in female patients, but not in male patients. The greatest cell proliferation and collagen synthesis was seen at women in menstrual and postmenopausal age. These results demonstrated that effects of estrogen on dermal fibroblast proliferation and collagen synthesis were variable with gender and age.

Developmental Potentials of Clone Embryos Derived from Bovine Fetal Fibroblast Cells (소 태아섬유아세포 유래 복제란의 발육능에 관한 연구)

  • Cheong, H.T.;Kwon, D.J.;Park, Y.S.;Hwang, H.S.;Park, C.K.;Yang, B.K.;Kim, C.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study was conducted to investigate the developmental potential of cloned embryos derived from bovine fetal fibroblast cells, and the effect of quiescent treatment, passage number and origin of donor cells on in vitro development of cloned embryos. Fetal skin and liver-derived fibroblast cells were transferred to enucleated oocytes after serum starvation or nontreatment (cycling). After electrofusion. reconstituted embryos were activated with $Ca^{++}$-ionophore and cycloheximide, and cocultured for 7~9 days with BRL cells. Some blastocysts were transferred to recipient cows 7~8 days post estrus. The development rate to the blastocyst stage of serum starved cell-derived embryos was higher (25.3%) than that of actively dividing cells-derived embryos (15.9%), The rates of blastocyst formation were 23.1~25.0% after transfer of cell passaged 4 to 6 times, and 23.8 and 25.2% after transfer of fetal skin and liver cells, respectively. After embryo transfer, 34.4% and 15.6% of recipient cows were pregnant on Day 60 and 120, respectively, and one male calf was produced from skin-derived vitrified blastocyst. The result of this study showed that the development of cloned embryos. was enhanced by quiescent treatment, but did not different among the cells passaged 4 to 6 times, and between skin and liver cells. This result also confirms that offspring can be obtained from the vitrified clone embryo derived from fetal skin cell.

  • PDF