• Title/Summary/Keyword: Boussinesque equation

Search Result 2, Processing Time 0.02 seconds

Mooring Analysis due to Ship Wave at Gunzang New Port (군장신항만의 항주파로 인한 계류안정성해석)

  • Kim, Jae-Soo;Kong, Byung-Seung;Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.69-74
    • /
    • 2008
  • This study performed a numerical simulation to predict the development of ship waves and their propagation in the shallow water region of Gunzang New Port and to examine the stability of taut line mooring at the sea wall using the design criteria. In order to predict the propagation of ship waves based on the speeds of various ships under complicated and shallow water depths, a computer model was constructed based on the Boussinesque equation with a fixed coordinate system. Additionally, an investigation if the stability was made by applying MOSES under the environmental loadings estimated by OCIMF.

The Interpretation on Underground Stress of Soil Layer Subjected to Moving Repeated Loads (이동하중에 의한 지중응력 해석)

  • Park Heung-Gyu;Kim Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.55-63
    • /
    • 2005
  • In this research, we have compared and analyzed the value driven from theoretical equation of Boussinesque, Westergaard, Newmark and K$\"{o}$ogler with our experimental value from the model test on the underground stress distribution condition. As a result of conducting the Model Test, a change in the underground stress according to the loading was proven to be very similar to the tendency shown in the theories of Westergaard. A tendency of increasing in a straight line was shown in the underground stress according to the increase of loading. When compared to that of the theoretical equation, underground stress values were great until the depth of 15cm. However, after that depth, a tendency of showing smaller value than that of the theoretical equation was shown. Correlations between Moving Repeated Load (or) and Underground Stress ($\Delta\sigma$) show $\Delta\sigma\;=\; 0.009\cdot{\sigma}r-0.1$(depth 60 cm).