• Title/Summary/Keyword: Bounds Ratio

Search Result 65, Processing Time 0.018 seconds

New Spatial Modulation Scheme based on Quaternary Quasi-Orthogonal Sequence for 8 Transmit Antennas (8개 송신 안테나에서 쿼터너리 준직교 시퀀스를 이용한 새로운 공간변조 기법)

  • Shang, Yulong;Kim, Hojun;Kim, Cheolsung;Jung, Taejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.637-645
    • /
    • 2015
  • Recently, a spatial modulation (SM) scheme achieving high throughput based on quaternary quasi-orthogonal sequences (Q-QOSs), referred to as Q-QOS-SM, is presented for $N_t=2^n(n=1,2,{\cdots})$ transmit antennas. In this paper, based on the design approach of the conventional Q-QOS-SM, new improved QO-SM (I-QO-SM) schemes are proposed for 8 transmit antennas. The new schemes employ Q-QOSs of length 4 or 2 unlike of 8 in the original one, which guarantees more information bits to be allocated for antenna index parts compared to the conventional Q-QOS-SM. By computer simulation results, the proposed scheme are shown to enjoy much higher throughputs compared to the conventional other SM schemes for all simulation environments. Finally, we also examine and compare analytically the performances of the new and conventional SM schemes by calculating upper-bounds on BER performance.

A Study on Steady-State Criterion based on COV and a Fault Detection Method during GHP Operation (GHP 운전시 COV에 의한 정상상태 판별 및 이상검출 방법 연구)

  • Shin, Young-Gy;Oh, Se-Jae;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.705-710
    • /
    • 2011
  • Fault detection has to be proceeded by steady state filtering to get rid of transient effect associated with thermal capacity. Coefficient of variance (COV), ratio of standard deviation devided by moving average, was employed as steady-state filter. Engine speed and refrigerant pressures were selected as parameters representing system dynamics. The filtered values were registered as members of steady-state DB. They were found to show good functional relationship with ambient temperature. The relationship was fitted with a second order polynomial and the distribution bounds of the data around the fitted curve were expressed by visual inspection because of varying average and random data interval. Fault data were compared with the steady-state data obtained during normal operation. The fault data were easily isolated from the fault-free one. To make such isolation reliable, tests to construct good DB should be designed in a systematic way.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Delay Guaranteed Bandwidth-Efficient Multicast Routing in Wireless Multi-hop Networks (다중 홉 무선 네트�p에서 지연을 고려한 멀티케스트 루팅)

  • Sohn, Hee-Seok;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.2
    • /
    • pp.53-65
    • /
    • 2016
  • Static wireless multi-hop networks, such as wireless mesh networks and wireless sensor networks have proliferated in recent years because of they are easy to deploy and have low installation cost. Two key measures are used to evaluate the performance of a multicast tree algorithm or protocol : end-to-end delay and the number of transmissions. End-to-end delay is the most important measure in terms of QoS because it affects the total throughput in wireless networks. Delay is similar to the hop count or path length from the source to each destination and is directly related to packet success ratio. In wireless networks, each node uses the air medium to transmit data, and thus, bandwidth consumption is related to the number of transmission nodes. A network has many transmitting nodes, which will cause many collisions and queues because of congestion. In this paper, we optimize two metrics through a guaranteed delay scheme. We provide an integer linear programming formulation to minimize the number of transmissions with a guaranteed hop count and preprocessing to solve the aforementioned problem. We extend this scheme not only with the guaranteed minimum hop count, but also with one or more guaranteed delay bounds to compromise two key metrics. We also provide an explanation of the proposed heuristic algorithm and show its performance and results.

Natural Period Formula of a Reinforced Concrete Shear Wall Structure Considering Flange Wall Effect (플랜지형 벽체 효과를 고려한 철근 콘크리트 전단벽 구조물의 고유주기식)

  • Roh, Ji Eun;Kim, Joong Ho;Hur, Moo-Won;Park, Tae Won;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.55-62
    • /
    • 2018
  • In this study, natural period formular is presented for a RC shear wall structure with H-, T-, and L-shaped wall sections. The natural period formular proposed by Goel and Chopra and adopted in ASCE 7-10 was modified by using the ratio of the flange and web wall area. The natural periods of structures with H-shaped wall were numerically obtained, the results indicated that the ASCE 7-10 could not consider the natural period variation according to the length of the flange wall, but the proposed formula could do. Especially, ASCE 7-10 estimated much longer periods than eigenvalue analysis, and this implies that conservative seismic design is difficult. The periods by eigenvalue analysis exist between the upper and lower bounds given by the proposed formula, and conservative design is possible by using the proposed lower bound value. In order to verity the effectiveness of the proposed method, actual residential buildings with various types of flange walls are considered. Ambient vibration tests, eigenvalue analyses, and nonlinear dynamic analyses were conducted and the periods were compared with the values by ASCE 7-10 and the proposed formula. The results showed that the proposed formula could estimate more accurately the periods than ASCE 7-10.

Development of DCOC Algorithm Considering the Variation of Effective Depth in the Optimum Design of PRC Continuous Beam (PRC연속보 최적설계에서 단면의 유효깊이 변화를 고려한 DCOC알고리즘 개발)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.281-291
    • /
    • 2002
  • This paper describes the minimum cost design of prestressed reinforced concrete (PRC) hem with rectangular section. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non prestressing steel, and formwork is minimized. The design constraints include limits on the minimum deflection, flexural and shear strengths, in addition to ductility requirements, and upper-Lower bounds on design variables as stipulated by the specification. The optimization is carried out using the methods based on discretized continuum-type optimality criteria(DCOC). Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables - effective depth, eccentricity of prestressing steel and non prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. In this paper the effective depth is considered to be freely-varying and one uniform for the entire multispan beam respectively. Also the maximum eccentricity of prestressing force is considered in every span. In order to show the applicability and efficiency of the derived algorithm, several numerical examples of PRC continuous beams are solved.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Minimum Cost Design of Reinforced Concrete Beam Using DCOC (DCOC를 이용한 철근 콘크리트보의 최소경비설계)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.417-425
    • /
    • 2000
  • This paper describes the application of discretized continuum-type optimality criteria(DCOC) and the development of optimum design program for the reinforced concrete continuous beams with rectangular cross-section. The cost of construction as objective function which includes the costs of concrete, reinforcing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design Code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, and steel ratio. The self-weight of the beam is included in the equilibrium equation of the real system. An iterative procedure and computer program for updating the design variables are developed. Two numerical examples of reinforced concrete continuous beams are presented to show the applicability and efficiency of the DCOC-based technique.

  • PDF

Discrete Optimum Design of Reinforced Concrete Beams using Genetic Algorithm (유전알고리즘을 이용한 철근콘크리트보의 이산최적설계)

  • Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.259-269
    • /
    • 2005
  • This paper describes the application of genetic algorithm for the discrete optimum design of reinforced concrete continuous beams. The objective is to minimize the total cost of reinforced concrete beams including the costs of concrete, form work, main reinforcement and stirrup. The flexural and shear strength, deflection, crack, spacing of reinforcement, concrete cover, upper-lower bounds on main reinforcement, beam width-depth ratio and anchorage for main reinforcement are considered as the constraints. The width and effective depth of beam and steel area are taken as design variables, and those are selected among the discrete design space which is composed with dimensions and steel area being used from in practice. Optimum result obtained from GA is compared with other literature to verify the validity of GA. To show the applicability and efficiency of GA, it is applied to three and five span reinforced concrete beams satisfying with the Korean standard specifications.

Development of Optimum Design Program for PPC Structures using DCOC (이산성 연속형 최적성 규준을 이용한 PPC 구조의 최적설계프로그램 개발)

  • 한상훈;조홍동;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.315-325
    • /
    • 1997
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) and the development of optimum design program for the multispan partially prestressed concrete beams. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non-prestressing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design Code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, eccentricity of prestressing steel and non-prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. The self-weight of the structure is included in the equilibrium equation of the real system, as is the secondary effect resulting from the prestressing force. An iterative procedure and computer program for updating the design variables are developed. Two numerical examples of multispan PPC beams with rectangular cross-section are solved to show the applicability and efficiency of the DCOC-based technique.

  • PDF