• Title/Summary/Keyword: Boundary matching

Search Result 283, Processing Time 0.019 seconds

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

A Study on Matched Errors between PET and CT Images in PET/CT Examination According to Breathing Protocols (PET/CT 검사에서 호흡법에 따른 PET과 CT 영상의 정합오차)

  • Kim, Sang Un;Kwak, Dong Woo;Park, Hyeon Soo;Bang, Seong Ae;Park, Yeong Jae;LEE, In Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • Purpose : This study evaluated the effects of breathing protocols on matching results of PET and CT images using two breathing protocols such as free breathing and acquisition in holding the breathing after the normal expiration in acquiring CT images. Materials and Methods: Whole body FDG PET and CT images of 200 patients (mean age: 58 (range 20~84), 103 males and 97 females) using Discovery VCT (GE Healthcare, Milwaukee, USA). When taking CT images, subjects were asked to breathe freely (free breathing, n=100) or hold the breathing after the normal expiration (Hold, n=100). In the whole body image coronal section where PET and CT were matched, the matched error of the boundary between diaphragm and liver was measured in length. The matched errors were compared according to breathing protocol by age, sex and disease. The verification of statistical significance was made by SPSS 15.0 (SPSS Inc., Chicago, IL, USA) via one way ANOVA. Results: The matched error in all was 0.87 mm. According to breathing protocol, there was no significant difference in matched error as1.01 mm in free breathing and as 0.73 mm in hold breathing (p=.688). The matched error according to sex did not show significant difference as 1.08 mm of males, and 0.93 mm of females in free breathing (p=.517). In hold breathing, there was no significant difference as 0.79 mm of males and 0.66 mm of females (p=.738). There was no significant difference in matched error by age between free breathing and hold breathing (free breathing (p=.728), hold (p=.465). There was no significant difference in matched error by disease between free breathing and hold breathing (free breathing (p=.197), hold (p=.518) Conclusion: The difference in matched error between free breathing and hold breathing was less than 5 mm at 99%. There was no statistically significant difference in matched error by breathing protocol, age and disease. It was proved that there was no difference in matched error between PET and CT images according to breathing protocol during PET/CT scan.

  • PDF

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.