• Title/Summary/Keyword: Boundary Scan Register

Search Result 3, Processing Time 0.018 seconds

Test Methodology for Multiple Clocks Single Capture Scan Design based on JTAG IEEE1149.1 Standard (IEEE 1149.1 표준에 근거한 다중 클럭을 이용한 단일 캡쳐 스캔 설계에 적용되는 경계 주사 테스트 기법에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.980-986
    • /
    • 2007
  • Boundary scan test structure(JTAG IEEE 1149.1 standard) that supports an internal scan chain is generally being used to test CUT(circuit under test). Since the internal scan chain can only have a single scan-in port and a single scan-out port; however, existing boundary test methods can not be used when multiple scan chains are present in CUT. Those chains must be stitched to form a single scan chain as shown in this paper. We propose an efficient boundary scan test structure that adds a circuit called Clock Group Register(CGR) for multiple clocks testing within the design of multiple scan chains. The proposed CGR has the function of grouping clocks. By adding CGR to a previously existing boundary scan design, the design is modified. This revised scan design overcomes the limitation of supporting a single scan-in port and out port, and it bolsters multiple scan-in ports and out ports. Through our experiments, the effectiveness of CGR is proved. With this, it is possible to test more complicated designs that have high density with a little effort. Furthermore, it will also benefit in designing those complicated circuits.

Development of Continuous Capture Test Architecture in the Boundary Scan (경계면스캔에서의 연속캡쳐 시험구조 개발)

  • Jhang, Young-Sig;Lee, Chang-Hee
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.79-88
    • /
    • 2009
  • In boundary scan architecture, test stimuli are shifted in one at a time and applied to the on-chip system logic. The test results are captured into the BSR and are examined by subsequent shifting. In this paper, we developed a continuous capture test architecture and test procedure using TPG based on boundary scan is used to performance test. In this architecture, test patterns of TPG are applied to CUT with system clock rate, and response of CUT is continuously captured by CBSR(Continuous Capture Boundary Scan Register) at the same rate and the captured results is shifted to TDO at the same rate. The suggested a continuous capture test architecture and test procedure is simulated by Altera Max+Plus 10.0. The simulation results shows the accurate operation and effectiveness of the proposed test architecture and procedure.

Design of Run-time signal test architecture in IEEE 1149.1 (IEEE 1149.1의 실시간 신호 시험 구조 설계)

  • Kim, Jeong-Hong;Kim, Young-Sig;Kim, Jae-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • IEEE 1149.1 test architecture was proposed to support the test of elements within the boards. It is a large serial shift register that uses the TDI pin as an input and the TDO pin as an output. Even though it performs the board level test perfectly, there is a problems of running system level test when the boards are equipped to the system. To test real time operation signal on test pin, output speed of serial shift register chain must be above double clock speed of shift register. In this paper, we designed a runtime test architecture and a runtime test procedure under running system environments to capture runtime signal at system clock rate. The suggested runtime test architecture are simulated by Altera Max+Plus 10.0. through the runtime test procedure. The simulation results show that operations of the suggested runtime test architecture are very accurate.