• Title/Summary/Keyword: Boundary Form

Search Result 1,001, Processing Time 0.027 seconds

CLASSIFICATION OF SINGULAR SOLUTIONS FOR THE POISSON PROBLEM WITH VARIOUS BOUNDARY CONDITIONS

  • Kim, Seok-Chan;Woo, Gyung-Soo;Kong, Soo-Ryoun
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.579-590
    • /
    • 2009
  • The precise form of singular functions, singular function representation and the extraction form for the stress intensity factor play an important role in the singular function methods to deal with the domain singularities for the Poisson problems with most common boundary conditions, e.q. Dirichlet or Mixed boundary condition [2, 4]. In this paper we give an elementary step to get the singular functions of the solution for Poisson problem with Neumann boundary condition or Robin boundary condition. We also give singular function representation and the extraction form for the stress intensity with a result showing the number of singular functions depending on the boundary conditions.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis (터널 진동해석을 위한 반무한 경계요소법의 적용)

  • 김문겸;이종우;전제성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

A study on the Kineticism which was introduced to Boundary form in Interior Design (실내디자인에 있어서 경계의 형태에 도입된 키네티시즘에 관한 연구)

  • Choi, Joo-Yeun;Lee, Jin-Min
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.171-180
    • /
    • 2005
  • The purpose of this research is to investigate the nature of direction of the design corresponding to a human-centered design, digitalism, ecological design, and culture-oriented design which is an issue of design in the 21st century, from the design of the inside of a room. As a method of approach to this objective, first, 1 understand the form of boundary structure appearing in space, through the theoretical investigation of a boundary form. This research is trying to elicit the expression characteristic of kineticism which was introduced to the boundary form as a factor constituting space, by investigating the characteristic of kinaticism which was expressed in plastic arts and other genres. As a process of the proceeding of this investigation, It is explained the background, purpose, and method of this study in Chapter I, and look into the characteristic of the unfolding and expression of kinetic arts as well as the structure of a boundary form of space in Chapter II. In Chapter III, I divide the aspect of modern architectural space into realistic movement, relative movement, and associational movement and examine them. In Chapter IV, I investigate a case of modern space in which the three types of the characteristic of movement mentioned in Chapter Three was expressed, and analyze to what boundary structure the space was introduced. Last of all, in Chapter V, I elicit the characteristic of a boundary form of kineticism which was the result that appeared through the above analysis, and present the nature of future direction of interior.

  • PDF

THE SPECTRAL GEOMETRY OF EINSTEIN MANIFOLDS WITH BOUNDARY

  • Park, Jeong-Hyeong
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.875-882
    • /
    • 2004
  • Let (M,g) be a compact m dimensional Einstein manifold with smooth boundary. Let $\Delta$$_{p}$,B be the realization of the p form valued Laplacian with a suitable boundary condition B. Let Spec($\Delta$$_{p}$,B) be the spectrum where each eigenvalue is repeated according to multiplicity. We show that certain geometric properties of the boundary may be spectrally characterized in terms of this data where we fix the Einstein constant.ant.

THE EIGENVALUE PROBLEM AND A WEAKER FORM OF THE PRINCIPLE OF SPATIAL AVERAGING

  • Kwean, Hyuk-Jin
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • In this paper, we find explicitly the eigenvalues and the eigenfunctions of Laplace operator on a triangle domain with a mixed boundary condition. We also show that a weaker form of the principle of spatial averaging holds for this domain under suitable boundary condition.

  • PDF

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.