• Title/Summary/Keyword: Bounce

Search Result 140, Processing Time 0.032 seconds

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

A Minimized Test Pattern Generation Method for Ground Bounce Effect and Delay Fault Detection (그라운드 바운스 영향과 지연고장을 위한 최소화된 테스트 패턴 생성 기법)

  • 김문준;이정민;장훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.69-77
    • /
    • 2004
  • An efficient board-level interconnect test algorithm is proposed considering both the ground bounce effect and the delay fault detection. The proposed algorithm is capable of IEEE 1149.1 interconnect test, negative ground bounce effect prevention, and also detects delay faults as well. The number of final test pattern set is not much different with the previous method, even our method enables to detect the delay faults in addition to the abilities the previous method guarantees.

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

Study of Scattering Mechanism in Oyster Farm by using AIRSAR Polarimetric Data (AIRSAR 다중편파 자료를 이용한 굴 양식장 산란현상 연구)

  • Lee Seung-Kuk;Hong Sang-Hoon;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.303-316
    • /
    • 2005
  • Strong radar returns were observed in oyster sea farms, and coherent interferometric pairs were successfully constructed. Tide height in coastal area is possible to be measured by using interferometric phase and intensity of SAR data. This SAR application technique for measuring the tide height in the near coastal zone can be further improved when applied to double bounce dominant areas. In this paper, we investigate the characteristics of polarimetric signature in the oyster farm structures. Laboratory experiments were carried out using Ku-band according to the target scale. Radar returns from vertical poles are stronger than those from horizontal Pole by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with the height of vertical poles, which implies double bounce is more useful to determine water level than total power. A L-band NASA/IPL airborne SAR (AIRSAR) image was classified into single-, double-bounce, and volume scattering components. It is observed that oyster farms are not always characterized by double bounced scattering. Double bounce is a main scattering mechanism in oyster farms standing above seawater, while single bounce is stronger than double bounce when bottom tidal flats are exposed to air. Ratios of the normalized single to double bounce components in the former and latter cases were 0.46 and 5.62, respectively. It is necessary to use double bounce dominant sea farms for tide height measurement by DInSAR technique.

Effect of bounce resonance heating on Electron Energy Distribution Function in a small Inductively Coupled Plasma

  • 정진욱;서상훈;장홍영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.208-208
    • /
    • 1999
  • It is found that with increasing power, the measured electron energy distribution by Langmuir probe evolves into a Druyvesteyn-like electron energy distribution in the low-pressure regime of 1mTorr in a small inductively coupled plasma. Electron bounce resonance is introduced to explain the transition of the electron energy distribution against the rf power, The energy diffusion coefficients which determine the shape of the electron energy distribution in elastic range are calculated with and without electron bounce resonance. This electron energy distribution transition is well explained by the electron bounce resonance.

  • PDF

음의 유전율을 갖는 액정을 이용한 FFS모드에서의 Optical bounce 발생 원인에 관한 연구

  • Chae, Mi-Na;Ha, Gyeong-Su;Jeong, Jun-Ho;Lee, Seung-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.162-162
    • /
    • 2009
  • Optical bounce which occurs by over twist of the liquid crystal (LC) director has a problem of response time in fringe-field switching (FFS) modes. After removing the electric field, effective birefringence ($d{\Delta}n_{eff}$) at the edge of pixel electrode meets the $\lambda/2$ phase instantly, since tilt angle of LC directors at that position suddenly decreases compared to twist angle. In this paper, based on the careful analysis, origin of optical bounce has been explained.

  • PDF

Origin of Optical Bounce during switching in the FFS Mode using a LC with Positive Dielectric Anisotropy (유전율이 양인 액정을 이용한 FFS모드의 스위칭시 Optical Bounce 발생 원인에 관한 연구)

  • Ha, Kyung-Su;Jung, Jun-Ho;Kim, Min-Su;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.63-64
    • /
    • 2009
  • Optical bounce during switching in the fringe field switching (FFS) mode using a liquid crystal (LC) with positive dielectric anisotropy has been observed. According to the analysis, it occurs at two positions which are center and edge of the pixel electrode, which decreases decaying response time. The former is major and mainly associated with increase in twist angle instantaneously during switching off resulted from decrease in tilt angle near by LC molecules at center. This paper discusses the origin of such optical bounces.

  • PDF

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

An Empirical Study on the Effects of Venture Company's Website Properties on Bounce Rate (벤처기업 웹사이트의 속성이 웹사이트 이탈률에 미치는 영향에 관한 실증연구)

  • Yun Do Hwang;Tae Kwan Ha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.67-79
    • /
    • 2023
  • The bounce rate is the rate at which a user leaves immediately after visiting, and this study aimed to find out what attributes of a website affect the bounce rate. Web site evaluation items were defined as a total of 4 items and 27 evaluation attributes, including usability, information, service interaction, and technology, so that they can be commonly applied to venture companies in various industries through prior research. As a result of the study, 6 website attributes that affect the bounce rate were verified to be significant by discriminant analysis and decision tree analysis. Suggestions to reduce the bounce rate of venture business websites through this study are as follows. First, the path name of the website is displayed as mandatory and a pull-down menu function is added to facilitate movement to other pages. Second, it is good to expose core content that can attract users' attention in the form of a banner, and place internal link banners in the right place on sub-pages. Third, external links should be linked to a new window so that they do not leave the current page immediately so that they can be re-entered. Lastly, it is recommended to expose the contact information of the person in charge and consultation function as direct information for communication with customers, but if individual response is difficult, at least the consultation function must be added. These suggestions are expected to be of practical help in various fields such as website development, operation, and marketing. However, in special cases, a high bounce rate may be normal, so it should be considered according to the situation.

  • PDF

Evaluation of Ride Quality Sensitivity on Vehicle Dynamic Behavior Using a Small Scale Simulator (소형 시뮬레이터를 이용한 차량거동요소별 승차감 민감도 평가)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Mun, Hyungchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.97-106
    • /
    • 2017
  • PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS : Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from "very satisfied"to "very dissatisfied."Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS :In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS : This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.