• Title/Summary/Keyword: Bouc-Wen Model

Search Result 56, Processing Time 0.02 seconds

On the response of base-isolated buildings using bilinear models for LRBs subjected to pulse-like ground motions: sharp vs. smooth behaviour

  • Mavronicola, Eftychia;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1223-1240
    • /
    • 2014
  • Seismic isolation has been established as an effective earthquake-resistant design method and the lead rubber bearings (LRBs) are among the most commonly used seismic isolation systems. In the scientific literature, a sharp bilinear model is often used for capturing the hysteretic behaviour of the LRBs in the analysis of seismically isolated structures, although the actual behaviour of the LRBs can be more accurately represented utilizing smoothed plasticity, as captured by the Bouc-Wen model. Discrepancies between these two models are quantified in terms of the computed peak relative displacements at the isolation level, as well as the peak inter-storey deflections and the absolute top-floor accelerations, for the case of base-isolated buildings modelled as multi degree-of-freedom systems. Numerical simulations under pulse-like ground motions have been performed to assess the effect of non-linear parameters of the seismic isolation system and characteristics of both the superstructure and the earthquake excitation, on the accuracy of the computed peak structural responses. Through parametric analyses, this paper assesses potential inaccuracies of the computed peak seismic response when the sharp bilinear model is employed for modelling the LRBs instead of the more accurate and smoother Bouc-Wen model.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

Unscented Kalman Filter with Multiple Sigma Points for Robust System Identification of Sudden Structural Damage (다중 분산점 칼만필터를 이용한 급격한 구조손상 탐지 기법 개발)

  • Se-Hyeok Lee;Sang-ri Yi;Jin Ho Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The unscented Kalman filter (UKF), which is widely used to estimate the states of nonlinear dynamic systems, can be improved to realize robust system identification by using multiple sigma-point sets. When using Kalman filter methods for system identification, artificial noises must be appropriately selected to achieve optimal estimation performance. Additionally, an appropriate scaling factor for the sigma-points must be selected to capture the nonlinearity of the state-space model. This study entailed the use of Bouc-Wen hysteresis model to examine the nonlinear behavior of a single-degree-of-freedom oscillator. On the basis of the effects of the selected artificial noises and scaling factor, a new UKF method using multiple sigma-point sets was devised for improved robustness of the estimation over various signal-to-noise-ratio values. The results demonstrate that the proposed method can accurately track nonlinear system states even when the measurement noise levels are high, while being robust to the selection of artificial noise levels.

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

Seismic Responses of Isolated Bridges Considering the Relative Stiffness Ratio (상대강성비를 고려한 지진격리교량의 응답특성)

  • Seo, Hyun-Woo;Kim, Nam-Sik;Cheung, Jin-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1340-1346
    • /
    • 2005
  • In this study, based on shaking table test results on a seismically isolated bridge model, an inelastic numerical model is refined by using Bouc-Wen model representing the hysteretic behavior of isolators. Seismic responses of isolated bridges are numerically investigated varying with relative stiffness ratio(RSR), which is a ratio of the effective stiffness of isolator to the lateral stiffness of bridge pier, From the results, it is found that an adequate range of relative stiffness ratio could be defined for seismic design of isolated bridges without considering the flexibility of piers.

Parametric Study on SDOF System with MR Damper Using Hysteretic Biviscous Model (단자유도 시스템에 대한 이력이점성 모델을 사용한 MR감쇠기 변수 연구)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.27-33
    • /
    • 2004
  • In this paper, various dynamic model of magnetorheological (MR) damper, is required for describing the hysteresis of MR damper and for their application are investigated to structural control. The dynamic characteristics and control effects of the modeling methods for MR dampers such as Bingham, biviscous, hysteretic biviscous, simple Bouc-Wen, Bouc-Wen with mass element and phenomenological models are studied. Of these models, hysteretic biviscous model which is simple and describes the hysteretic characteristics, is chosen for numerical studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Seismic response control of elastic and inelastic structures by using passive and semi-active tuned mass dampers

  • Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.239-252
    • /
    • 2011
  • In this study, the performances of a passive tuned mass damper (TMD) and a semi-active TMD (STMD) were evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for damped structures with a passive TMD and with a STMD proposed in this study. The displacement spectra confirmed that the STMD provided much better control performance than passive TMD and the STMD had less stroke requirement. Also, the robustness of the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of hysteresis described by the Bouc-Wen model. The results indicated that the performance of the passive TMD whose design parameters were optimized for an elastic structure considerably deteriorated when the hysteretic portion of the structural responses increased, and that the STMD showed about 15-40% more response reduction than the TMD.

Modeling and identification of a class of MR fluid foam dampers

  • Zapateiro, Mauricio;Luo, Ningsu;Taylor, Ellen;Dyke, Shirley J.
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.101-113
    • /
    • 2010
  • This paper presents the results of a series of experiments conducted to model a magnetorheological damper operated in shear mode. The prototype MR damper consists of two parallel steel plates; a paddle covered with an MR fluid coated foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid is reached by the magnetic field of the coil in one end of the device. Two approaches were considered in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent models and a non parametric approach based on a Neural Network model. The accuracy to reproduce the MR damper behavior is compared as well as some aspects related to performance are discussed.