• Title/Summary/Keyword: Bottom-up manufacturing

Search Result 43, Processing Time 0.025 seconds

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Study on Through Paths Inside the Air Pressure Pick-Up Head for Non-Contact Gripper (비접촉식 그리퍼 적용을 위한 공기압 파지식 헤드 내부 관통로 고찰)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.563-569
    • /
    • 2012
  • In the semiconductor and display device production processes, the handling of sensitive objects needs new carrying technology. Floating carrying motion is a practical alternative solution for non-contact handling of parts and substrates. This paper presents a study of through paths inside the air pressure pick-up head to generate the floating motion. The air motion by conceptual designed paths inside the head gradually develops positive pressure and vacuum between narrow objects. Positive pressure occurs through the head tip before discharging outside of the head. Negative pressure is developed by evacuating the inside head bottom as result of the radial flow connecting the vertical through-holes. The numerical analysis was done to figure out the stable levitation caused by the two acting forces between surfaces. In comparing with the standard case that the levitation gap gets 0.7-0.9 mm, it confirms the suggested head characteristics to show floating capacity in accordance with the head size, number of through-hole, and locations of through-hole in succession of conceptual design for a prototype.

A Study on the Cutting Surfaces in CNC Plasma Cutting of high tensile steel plate (고장력 강판의 CNC Plasma 절단시 절단면에 관한 연구)

  • 김인철;김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.149-154
    • /
    • 2003
  • The cutting tests of high tensile steel plate(AH36) were carried out using CNC plasma arc cutting machine. Both top and bottom width of kerf and the surface roughness(Ra, Rmax) of cut surface are measured under various cutting conditions such as cutting speed, steel plate thickness, etc. In the CNC plasma arc cutting, the surface roughness decreases as cutting speed increases. The hardness is high up to 4mm depth from the cutting surface. In the cutting speed 1300~2100mm/min, the ratio of proper kerf width(Wt/Wb) is around 2.6. Through the series the series of experiments, the satisfactory cutting conditions of high tensile steel plate were found.

  • PDF

Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석)

  • Yoon, Seung-Chae;Bok, Cheon-Hee;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Evaluation of Vertical Displacement of Door of Built-in Bottom-Freezer Type Refrigerator by Structural Analysis (구조해석을 통한 하부냉동실형 빌트인 냉장고 도어의 처짐량 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, we developed a finite element model for the built-in bottom-freezer type refrigerator and then used the structural analysis method to analyze and evaluate the deflection of the doors. We tested the validity of the developed analytical model by measuring the deflection of the hinge when loads were applied to the upper and lower hinges of the refrigerating compartment and compared these with the analysis results. The comparison of the vertical displacement of the measured result and the analysis result showed an error ratio of up to 12.8%, which indicates that the analytical model is consistent. Using the analytical model composed of the cabinet, hinges and doors, we performed analyses for two cases: both doors closed, and the refrigerating door open. Since the maximum vertical displacement of the refrigerating compartment door (R-door) with the food load is smaller than the gap between the lower surface of the R-door and the upper surface of the freezer compartment door (F-door), it is judged that the R-door and the F-door do not contact when the doors are opened or closed. In addition, the analysis result showed that the difference between the vertical displacement at the hinge on the opposite side and the hinge side of the R-door is favorably smaller than the management criterion of the refrigerator manufacturer.

A study on manufacturing technologies of the large-sized jar-coffins exhumed mainly in the Young San river area (대형옹관의 제작기법 연구-영산강유역 출토 옹관을 중심으로)

  • Yang, Pil-Seung;Park, Chul-Won
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.57-75
    • /
    • 2005
  • The burial custom in the Youngsan river area was to build a jar-coffin and lay the body in state, however the methods in building and moulding the massive jar, as well as in which kiln it was made has not been examined precisely. Thus, this research not only investigates previous results related to the manufacturing methods of massive jar-coffins, but also examines samples that were excavated and collected. The clay used to produce jar-coffin consists a large portion of unglazed qualities, which was split-moulded from the bottom up to the mouth area. The interior was finished by applying water, whereas the exterior was decorated by regularly pasting or stamping in parallel with a lattice design. It can be presumed that the finished jar-coffin was not moved, but the ceiling and walls were built around it as a kiln, for the jar-coffin to be oxidized or to reduce the flame condition in a temperature approximately $700~1,200^{\circ}C$The results from the research, however, show limitations to exploit the exact manufacturing method, therefore there is a need for in-depth examinations: mineralogical investigation on a large amount of jar-coffin samples through a polarized light microscope; substance analysis using various equipments; speculation on the temperature in the place of production and the flame inside.

  • PDF

Formation of Copper Seed Layers and Copper Via Filling with Various Additives (Copper Seed Layer 형성 및 도금 첨가제에 따른 Copper Via Filling)

  • Lee, Hyun-Ju;Ji, Chang-Wook;Woo, Sung-Min;Choi, Man-Ho;Hwang, Yoon-Hwae;Lee, Jae-Ho;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.335-341
    • /
    • 2012
  • Recently, the demand for the miniaturization of printed circuit boards has been increasing, as electronic devices have been sharply downsized. Conventional multi-layered PCBs are limited in terms their use with higher packaging densities. Therefore, a build-up process has been adopted as a new multi-layered PCB manufacturing process. In this process, via-holes are used to connect each conductive layer. After the connection of the interlayers created by electro copper plating, the via-holes are filled with a conductive paste. In this study, a desmear treatment, electroless plating and electroplating were carried out to investigate the optimum processing conditions for Cu via filling on a PCB. The desmear treatment involved swelling, etching, reduction, and an acid dip. A seed layer was formed on the via surface by electroless Cu plating. For Cu via filling, the electroplating of Cu from an acid sulfate bath containing typical additives such as PEG(polyethylene glycol), chloride ions, bis-(3-sodiumsulfopropyl disulfide) (SPS), and Janus Green B(JGB) was carried out. The desmear treatment clearly removes laser drilling residue and improves the surface roughness, which is necessary to ensure good adhesion of the Cu. A homogeneous and thick Cu seed layer was deposited on the samples after the desmear treatment. The 2,2'-Dipyridyl additive significantly improves the seed layer quality. SPS, PEG, and JGB additives are necessary to ensure defect-free bottom-up super filling.

A Fundamental Study on Nano-cement by Chemical Synthesis (화학적 방법에 의한 나노시멘트 개발에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Seok-Won;Yoon, Kwang-Won;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.713-718
    • /
    • 2009
  • Advanced industries-IT, BT, NT and ET are rapidly developing in 21 century. And the cement industry is becoming the principal factor in air pollution because of the creation of $CO_2$ during manufacturing. Also, the cement industry will be faced with a crisis due to the exhaustion of natural resources. In this study, nano cement by Bottom-up method of a chemical synthesis was developed. The generation of $CO_2$ during the plasticization process of cement manufacturing was avoided. The purpose was to produce building materials that have both high strength and durability as the high value-added growth engine industry of the 21 century. The nano cement was developed using hydrothermal synthesis. This is a method of mixing after ripening, by manufacturing the high density gel and low gel, which does not require special test equipment or pressure conditions to produce. Particle size, SEM, EDX, and porosity tests were conducted. This study investigated the compressive strength of concrete with various compositions. Specimens were tested for compressive strength at 3, 7, 14 and 28 days. The medium-sized (50% by weight) cement particles created by chemical synthesis were less than 168 nm. The compressive strength of the mortar prepared using this cement was 53.9 MPa. But it was judged that succeeding study will be necessary for development of nano building materials with high ability and economical analysis.

Development of Automatic Mark Welding Robot

  • Ryu, Sin-Wook;Kim, Ho-Gu;Lee, Jae-Chang;Kim, Se-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-648
    • /
    • 2005
  • Generally, ships have marks of various shapes on outside of the hull. Among them, so called "Draft Mark" indicates the distance from the bottom of the keel to the waterline. Draft marks are used to determine the displacement and other properties of the ship for stability and control purposes. These marks are made up of welding bead or sticking the steel plate on outside of the hull. To improve the confidence level of the ship owner, quality and accuracy of the draft mark is very important. So the automatic mark welding robot is used to enable a high quality and accurate manufacturing line. To improve the system portability, the system is divided into two distinct parts, namely mechanical part and control part. Mechanical part is robust, a lightweight, and easy to dismantle. The control part consists of an in-house developed controller, which is based on embedded Linux. Also, the control part consists of power line communication module to ensure the applicability of the controller in manufacturing line. In this paper, the methodologies of control and configuration of the robot are discussed.

  • PDF

Fully Organic PIN OLEDs with High Power Efficiency and Long Lifetime for the Use in Display and Lighting Applications

  • Blochwitz-Nimoth, Jan;Birnstock, Jan;Wellmann, Philipp;Werner, Ansgar;Romainczyk, Tilmann;Limmert, Michael;Grubing, Andre
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.955-962
    • /
    • 2005
  • Power efficiency, lifetime and stable manufacturing processes are the crucial parameters for the success of organic light emitting diodes (OLEDs) in display and lighting applications. Highest power efficiencies of PIN-OLEDs for all principal colours and for bottom and top emission OLED structures have been demonstrated. The PIN structure, which means the incorporation of intentionally doped charge carrier transport layer in a suitable OLED layer setup, lowers the operating voltage to achieve highest power efficiencies. Up to now the n-doping of the electron transport layer has been done by alkali metal co-deposition. This has main draw-backs in terms of manufacturability, since the handling of large amounts of pure Cs is a basic issue in production lines. Here we present in detail results on PIN-OLEDs comprising a newly developed molecular n-dopant. All the previous OLED performance data based on PIN-OLEDs with alkali metal doping could be reproduced and will be further improved in the future. Hence, for the first time, a full manufacturing compatible PIN-OLED is available.

  • PDF