• Title/Summary/Keyword: Bottom-Of-Atmosphere (BOA) reflectance

Search Result 2, Processing Time 0.025 seconds

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF