• Title/Summary/Keyword: Bottom sediments

Search Result 302, Processing Time 0.028 seconds

A Piston Type Free-fall Corer(KORDI-FFC) (피스톤식 자유낙하 주상시료 채취기)

  • 지상범;어영상
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.365-370
    • /
    • 1995
  • A new piston-type Free-fall corer (FFC) was developed for the sampling of core sediments in aquatic environments. The corer, named "KORDI-FFC", is the modified sampler of the existing FFX with an open barrel gravity corer. It was rested successfully on the muddy bottom in the Chinhae Bay and on the sandy bottom (Mz=3$\phi$) in nearshore areas around the Cheju Island. Several merits found in the unstrument are; $\circled1$ operation on a small vessel without winch and cable, $\circled2$ low cost of construction, $\circled3$ little disturbance of surface sediments during the sampling, $\circled4$ short round-trip time of sampling, and $\circled5$ simultaneous performance of other research works during the lowering of FFC.

  • PDF

Processing of Side Scan Sonar and SBP Data for the Artificial Reef Area (인공어초지역에 대한 사이드스캔소나와 SBP 탐사 자료처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Jang, Won-Il;Lim, Jong-Se;Yoon, Ji-Ho;Lee, Seong-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.192-198
    • /
    • 2009
  • Side scan sonar and SBP (sub-bottom profiler) play a very important role in the survey for seafloor imaging and sub-bottom profiling. In this study, we have acquired side scan sonar and SBP data from the artificial reef area. We applied digital image processing techniques to side scan sonar data in order to improve an image quality. For the enhancement of data quality and image resolution, we applied the typical seismic data processing sequence including gain recovery, muting, spectrum analysis, predictive deconvolution, migration to SBP data. We could easily estimate if artificial reef structures were settled properly and their distribution on the seafloor from the integrated interpretation of side scan sonar and SBP data. From the sampling analysis of seabed sediments, texture filtering of side scan sonar data and SBP data interpretation, we could evaluate the sediment type, distribution and thickness of seafloor sediments in detail.

Sea-bottom Sediments and Seafloor Acoustic Image by Side Scan Sonar on Sindu-ri Offshore (신두리 해안 Side Scan Sonar 해저면 음향영상과 해저퇴적물)

  • Woo, Han-Jun;Lee, Yong-Kuk;Jeong, Kap-Sik;Je, Jong-Geel;Park, Gun-Tae;Jung, Baek-Hun;Cho, Jin-Hyung;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.707-721
    • /
    • 2002
  • Seafloor acoustic image data using the side scan sonar system were gathered on the Sindu-ri offshore near the Taean peninsula, middle western Korea. The relationship between the back-scattering acoustic intensity and the sea-bottom sediment properties was studied. And these two data sets were compared and interpreted with the water depth, respectively. Most of sediment properties were correlated well to the acoustic intensity, however the distribution patterns of the sea-bottom sediment and the seafloor acoustic image were not similar to each other except the rocky bottom area. The water depth was not only influential on the distribution pattern of seafloor acoustic image but also showed a linear relation with the sediment properties distribution.

Estimation of Contamination Level of Sediments at the Below of Busan Gwang-an Bridge (부산 광안대교 하부 퇴적토 오염도 평가)

  • Kim, Seog-Ku;Ahn, Jae-Whan;Kang, Sung-Won;Yun, Sang-Leen;Lee, Jungwoo;Lee, Jea-Keun;Lim, Jun-Heok;Kim, Dong-Soo;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • In this study, physical properties and heavy metal contents of sediments obtained from the bottom of Gwangan bridge were measured to determine pollution level of the sediments. From the results of the oxide contents of the sediments, $SiO_2$ was decreased as the sampling points became more distant from the stream of river. On the contrary, CaO showed opposition aspect to $SiO_2$. Ignition loss of sediments ranged from 7.2 and 14.3% and 0.9 and 5.5% for TOC. For EPA guidelines of ignition loss, all sampling points were classified as heavily polluted areas. When TOC was considered, all areas were classified as lowest effect level except for GW7 where classified as no effect level. All areas were free of heavy metal contamination evaluated by USEPA and Canadian guidelines. However, all areas were classified as heavily contaminated areas due to the high value of ignition loss when USEPA was used.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Gwangyang and Yeosu Bay, south coast of Korea (광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염)

  • 현상민;이태희;최진성;최동림;우한준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.380-391
    • /
    • 2003
  • Surface sediments were collected from Gwangyang and Yeosu Bays to evaluate their sedimentological characteristics and geochemical aspects of both the benthic environment and heavy metal pollution. The grain size distribution includes both sandy and muddy sediments. Sand-rich sediments occur mainly near the POSCO and the channel between Namhedo and Yeosu Bando, while elsewhere mud-dominated sediments are present. TOC content ranges from 0.2 to 2.1 % and C/N ratios indicate that the range arises from the mix of organic matter. The C/S ratios of this organic matter show that parts of the study area are anoxic or have sub-anoxic bottom conditions. The hydrogen sulfide content of the sediment has a range of 0.7 to 301 ppm, with a high content occurring inshore of Myodo Island, where it indicates a polluted environment. The enrichment factor (Ef) and index of accumulation rate (Igeo) of ten heavy metals (Co, Ni, Cu, Cd, Pb, Li, Zn, V, Cr, Ba) show that parts of the study area contain from one to seven times more Pb and Ba, and from 0.8 to 3.5 times more of the other elements than the mean sediment value. The Igeo values of V and Cd show that different parts of the area can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted. Those areas that have both high levels of enrichment and high accumulation rates of heavy metals contain predominantly fine sediments with a high organic matter and hydrogen sulfide content.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Numerical Modeling of Cohesive Sediment Transport at Mokpo Coastal Zone (목포해역 점착성 퇴적물의 수송에 관한 수치모의)

  • Jung T.S.;Kim T.S.;Jeong D.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • Cohesive sediment transport in coastal region has been studied by numerical modeling. A finite element numerical model was setup to simulate hydrodynamics and sediment transport in the coastal region with complex topography. Only physical features of observed sediments has been used to determine erosion rates of bottom sediments together with the previous research results. The simulation results using the simply determined equation of erosion rates were compared with time variations of the observed SS concentration and showed good agreements. In conclusion, this method can be used to estimate transport of cohesive sediment conveniently.

  • PDF

The Spatial and Vertical Variations of Metal Pollution in Sediments after Tidal Power Plant Operation in Shihwa Lake (시화호 조력발전소 가동으로 인한 퇴적물 내 중금속 오염 특성 변화)

  • LEE, JIHYUN;JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.535-547
    • /
    • 2019
  • In this study, the heavy metal analysis in sediments (surface sediments, sediments cores and settling particles) from Shihwa Lake has been carried out to evaluate the changes of metal pollution levels in sediments after the operation of Tidal Power Plant (TPP). The average concentrations of metals in surface sediments sampled in 2015 were 8% (Cd)~31% (Zn, Hg) lower than in 2009 before TPP operation. Results of calculating the pollution load index (PLI) with 8 metals, the PLI value in 2015 showed a 18% decrease compared to 2009. However, Cu, Zn, Pb concentrations of surface sediments in 2015 at the upper region around industrial complex still exceeded the TEL (threshold effect level) values for sediment quality guideline in Korea. After the operation of TPP, the metal contaminated depths were increasing from 15 cm to 30 cm at S6 site and from 8 cm to 20 cm at S7 site, respectively. Our data showed that the mean concentration of heavy metals in core samples decreased but the contaminated depth increased. The average of the total sedimentation flux for particulate matter increased by 3.2 times from 32.5 g/㎡/d in 2009 to 103.5 g/㎡/d in 2015. This showed that the bottom sediments were resuspended by the operation of TPP, resulting in an increase of particulate matter in the water column. These results suggest that the sediments contaminated with heavy metals seem to be resuspended and relocated due to the water current caused by the operation of TPP. Cr, Cu, Zn, Pb and Cd were highly exceeding the TEL values in the upstream region and accumulated more than 40 cm of sediment depth, indicating that heavy metal contamination through industrial activity were still a serious environmental problem of Shihwa Lake. Although the metal pollution of Shihwa Lake has been slightly reduced, the contaminated sediments with heavy metals inside of Shihwa Lake might be discharged to outer sea after the resuspension by TPP operation. It is necessary for the advanced scientific approach and political decision to drastically reduce the heavy metal pollution of the study region.

Spatial Variability and Contents of Metals in the Surficial Sediments of Youngil Bay, East Coast of Korea (한국 동해안 영일만 표층 퇴적물의 금속 함량과 공간 변화 특성)

  • Um, I.K.;Lee, M.K.;Jeon, S.K.;Jung, H.S;Lim, D.I.
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.477-490
    • /
    • 2003
  • Bottom sediments from Youngil Bay, East Coast of Korea, were analyzed for grain composition as well as elemental compositions and total organic carbon (TOC) content in order to investigate the spatial variability and content of metal elements. Grain size distribution of the sediments seems to be controlled by anticlockwise current pattern with bottom topography of the study area. Spatial variability of TOC and all elemental contents reflects those of grain size, but an exception was found in the harbor area (Old-Port): their contents are high in the central part of the bay with the muddy sediment and decrease toward the sand-dominated coastal zone. However, contents of Ca, Sr, K are high in the sand-dominated coastal zone and contents of some heavy metals (Cd, Cu, Zn) are high in the Old-Port area and the mouth of Hyeongsan River. The correlation matrix and R-mode factor analyses reveal that four important factors controlling the distribution of metals in the bay are sediment grain size (or quartz dilution effect), the formation of sulfide minerals associated with decomposition of organic matters under anoxic geochemical environment, calcium carbonate (mainly shell fragments) and coarse-grained feldspar mineral. According to the metal content of labile fraction an CER (concentration enrichment ratio) value, high accumulation of some heavy metals in the harbor area seems to result not formed by early diagenetic processes under anoxic environment.

Environment Analysis of Kwangyang Bay after the Keumdong Oil Spill

  • Park, Yong-Chul;Han, Myung-Woo;Kim, Sung-Jun;Chung, Kyung-Ho;Son, Seung-Kyu;Chung, Jin-Won
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.168-177
    • /
    • 1998
  • Five and a half months after the Keumdong oil spill accident on the 21$^{st}$ of September 1993, 34 seawater samples and 94 sediment samples were collected from Kwangyang Bay and Namhaedo area to assess its environmental impacts. Hydrocarbon concentration in the seawater ranged from 0.8 to 9.2 ${\mu}$g/1 with an average of 3.3 ${\mu}$g/1. This average value was nearly the same as the value(3.7 ${\mu}$g/1) before the oil spill accident. This suggests that by the early March of 1994 majority of the coastal water in the study area restored to its background hydrocarbon concentration before the oil spill accident. Nutrients, heavy metals and other general environmental parameters of the seawater did not show any aggravated seawater quality compared with the previous records. From the regression analysis of time-course observation of hydrocarbon in the seawater, except the sediment environment, the effect of oil spill on the water column was estimated to last at least 4 months in the study area after the oil spill accident. In the shoreline sediments, oil deposits were, however, still found at the high water marks at several stations, and very high values were found in the west of Namhaedo, ranging from 3.7 to 40.1 mg/g of wet sediment. Gas chromatography of these samples showed a very distinct Bunker C chromatogram identical to the Keumdong oil spill. Hydrocarbons in the subtidal bottom sediments in the study area and the reference stations (YB and CB) ranged from 0.45 to 18.08 ${\mu}$g/g of wet sediment with an average of 3.09 ${\mu}$g/g. West of Namhaedo (Stations Bl2-B33) generally showed much higher values than inner Kwangyang Bay and in Chinju Bay. Chinju Bay generally showed the lowest value among the study area. Subtidal bottom sediments in inner Kwangyang Bay and Chinju Bay seemed to be less affected than west of Namhaedo. Heavy metal concentrations in the sediment were relatively higher in the Kwangyang Bay than in the Chinju Bay. However, metal concentrations in the study area were in general comparable to the reference areas.

  • PDF