• Title/Summary/Keyword: Bottom salinity

Search Result 303, Processing Time 0.024 seconds

The Environmental Factors Affecting the Distribution and Activity of Bacteria in the Estuary of Naktong River (낙동강 하구의 세균분포와 활성에 미치는 환경요인)

  • 안태영;조기성;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.329-338
    • /
    • 1991
  • From July 1985 to December 1986, 28 variables of phycal-chemical factors, bacteria and heterotrophic activity were investigated 17 times at 3 stations in the estuary of Naktong River and the influences of environmental factors to bacterial population and heterotrophic activity were analyzed through multiple regression. The results of multiple regression were as follows. At station 1, total bacteria and heterotrophic bacteria(Z-25) could explain 57% of the variation of maximum uptake velocity for glucose and 54% of turnover time for glucose was explained by total coliform bacteria and MBOD, Sixty four percent of the variation of Kt+SN was accounted for salinity, MBOD-N and inorganic phosphate. Turnover rate for acetate was also accounted for the change of MBOD-P by 56%. At station 2 maximum uptake velocity for glucose depends on MBOD-N by 81%; turnover time on bacteria by 50%; Kt+Sn on avilable nutrient by 61%. More than 50% of maximum uptake velocity and turnover time for glucose were influenced by bacteria and that of Kt+Sn by the change of nutrient in the surface water of station 3. In the bottom water of station 3, the change of maximumuptake velocity, turnover time and Kt+Sn for glucose was controlled by total bacteria and available nutrient, bacteria, the change of nutrient salts respectively. On the whole, more than 50% of maximum uptake velocity and turnover time for glucose could be due to the change in the number of bacetria and the value of Kt+Sn was affected by the change of nutrient salts. Turnover rate for acetate was controlled by available phosphate at station 1 and by bacteria at station 2 and 3, which showed a distinct difference between the environmental factors which govern the rate of glucose and acetate uptake in the Naktong esturine ecosystem. And bacterial communities were controlled by available nutrients at station 1, by nutrient salts and salinity at station 2 and in the surface water of station 3 and by salinity in the bottom water of station 3.

  • PDF

Studies on the Marine Environmental Improvement and Environmental Perception of the Inhabitants around the Sun-So Coast (선소 해역 부근의 해양 환경 개선 사업 고찰 및 주민들의 환경 인식 조사에 대한 연구)

  • Shim, Wang-Geun;Park, Se-Ra;Kim, Sang-Chai
    • Hwankyungkyoyuk
    • /
    • v.22 no.1
    • /
    • pp.12-30
    • /
    • 2009
  • The relationship between marine environmental improvement and environmental perception of the inhabitants was investigated. For this purpose, the seawater and bottom materials were analysed. Apart from this, the questionnaire surveys were also conducted around the Sun-so coastal area. In order to examine the improvement in the marine environment, 12 monitoring sites, which are located around Sun-so coast and can be divided into two parts such as inland (GW1-GW6) and outland (GW7-GW12) sea, were chosen. All the collected samples were analyzed to find out the quality of seawater (temperature, pH, salinity, dissolved oxygen: DO, chemical oxygen demand: COD and suspend solid: SS), nutrients (total nitrogen: TN and phosphate: $PO_4-P$) and bottom materials (COD, volatile solids: VS) as per the standard analytical procedures. In addition, the questionnaire mainly focused on the following three factors: 1) social economy, 2) dependent environmental awareness and 3) independent environmental awareness related with the environmental education. The monitoring studies indicated that the marine environment of the Sun-so coast showed various trends for analyzing parameter. No significant temporal changes in temperature, pH and salinity were observed. However, the other parameters showed decreasing (COD, SS, TN, $PO_4-P$ and VS) and increasing (DO) trends according to the quality of seawater and bottom materials. The questionnaire survey clearly showed that most of the residents in Sun-so recognized the improvement of marine environment as compared with the situation experienced in the past. The dredging project which is closely related with economic and living conditions of the local residents led to alter the environmental perceptions and attitudes. The survey also indicated that the inhabitants perceived the necessity of the environmental education (87% of respondents) and preferred regular schooling (55% of respondents) as effective and practical education methods.

  • PDF

Temporal Variations of Heterotrophic- and Photosynthetic Dinoflagellates at a Single Station in Jangmok Bay in Summer 2003 (2003년 하계 장목만 단일정점에서 종속영양 와편모류와 광합성 와편모류 현존량의 시간적 변화)

  • Lee, Won-Je;Yang, Un-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.607-615
    • /
    • 2010
  • We investigated the temporal variations of heterotrophic dinoflagellates (hereafter HDNF) and photosynthetic dinoflagellates (hereafter PDNF) from 14 June to 4 September 2003 at a single station in Jangmok Bay. We took water samples 47 times from 2 depths (surface and bottom layers) at hide tide. A total of 63 species were encountered and in general the most abundant genera were Prorocentrum and Protoperidinium. The abundance of PDNF and HDNF was in the range of $0.04{\sim}55.8{\times}10^4$ cells/L and in the range of $0.01{\sim}4.35{\times}10^4$ cells/L, respectively. The mean abundance of PDNF was approximately 7 times higher than that of HDNF, and was higher in the surface layer where has enough irradiance for photosynthesis than in the bottom layer. The total dinoflagellate abundance was higher in the NLP (nitrogen limitation period) than in the SLP (silicate limitation period), and the abundance in the hypoxic conditions was similar to that in the normal conditions. The Shannon-Weaver species diversity index were slightly higher in the bottom layer, the SLP and the hypoxic conditions. The PDNF abundance were correlated with temperature, DO, total inorganic nitrogen and phosphate in the whole water column, and the HDNF abundance was significantly correlated with temperature, salinity and DO. This study shows that the dinoflagellate abundance might be affected by abiotic factors such as irradiance, temperature, salinity, DO and the concentrations of inorganic nutrients, and provides baseline information for further studies on plankton dynamics in Jangmok Bay.

Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea (하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예)

  • An, Soon-Mo;Lee, Sang-Yong;Choi, Jae-Ung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.70-80
    • /
    • 2011
  • Estuarine ecosystem responds sensitively to natural and anthropogenic perturbations. lt is necessary to identify the direction of the change when the perturbation occurs as well as to understand the structure and functioning of estuarine ecosystem for a proper management of the area. In this study, the estuarine habitats were classified into different ecological districts so as to the switch from one district to another district could be related to the environmental change due to the perturbations. Total 16 ecological districts was defined according to the presence of barrage, salinity and vegetation characteristics. The defined ecological districts were applied to small estuaries in Goseong bay, south sea of Korea (Baedun, Guman, Maam, Goseong) to distinguish different regions which might have characteristic bottom topography, inclinations of river bottom, sediment characteristics, salinity structure and area of vegetation. Total 7 out of 16 ecological district was identified in this region; NFB (natural, fresh, bare), NHB (natural, high salinity, bare), NLV (natural, low salinity, vegetated) in natural (without barrage) estuaries and CFB (closed, fresh, bare), CFV( closed, fresh vegetated), CLV (closed, low salinity, vegetated), CHB (closed, high salinity, bare) in closed (with barrage) estuary. A comparison of environmental factors and biota between CHB and CLV demonstrated the effect of barrage on estuarine ecosystem. The height and sediment characteristics of CHB and CLV were similar but the average salinity was lower in CLV than in CHB due to the barrage, which produced favorable condition for the Phragmites australis in CLV. Information regarding the ecological districts in various sizes and location could be useful for predicting the ecosystem change due to natural and anthropogenic perturbations and for preparing management actions.

Mechanism of Oxygen-Deficient Water Formation in Jindong Bay (진동만의 빈산소수괴 형성기구)

  • 김동선;김상우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The influences of horizontal and vertical flow components including the stratification of water column and the wind field on the formation of oxygen-deficient water in summer in Jindong Bay, northern part of Chinhae Bay, were examined. Temperature, salinity and dissolved oxygen in seawater, and direction and velocity of wind were observed in Jindong Bay from March 1998 to February 1999. Low concentration of 5 mg/L in dissolved oxygen (DO) appeared at the bottom layer from May to September. Extremely low DO concentration less than 3 mg/L was investigated in summer (July to August) when stratification was strongest due to abrupt vertical gradients of temperature and salinity in water column. Bottom waters with the extremely low DO concentration were observed even in spring (May to June) at the inner part of the bay. In summer (August to September), the bottom waters with the low DO concentration (less than 5 mg/L) existed at the water depth from 4 to 6 m, being moved upward to the surface layer compared to other seasons. Vertical components of residual flow, calculated by the direction and velocity of wind, in Jindong Bay in summer showed that locally prevailed northerly and westerly wind resulted in downwelling flow at the outer part of the bay and conversely, upwelling at the inner part of the bay. In addition, bottom current at the outer part corresponding to the downwelling area directed to the inner part, probably resulting in a transport of the particulate organic matter settled at the bottom waters to the inner part of the bay. The oxygen-deficient watermass, which was formed at the bottom layer of the inner part, was likely to transported to the surface layer by the upwelling flow.

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.

Effect of Flooding and Soil Salinity on the Growth of Yam (Dioscorea batatas) Transplanted by Seedling of Aerial Bulblet in Saemangeum Reclaimed Tidal Land

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • The effect of flooding and soil salinity on the growth of yam (Dioscorea batatas) were studied on the experimantal site temporally established in the south-eastern part of Saemangeum Reclaimed Tidal Land (near Gwanghwal myun, Gimjae-gun, Jellabukdo, Korea). Yam seedlings planted by using aerial bulblet as alternative of sliced tubers, were grown for 20-days and transplanted in black-vinyl mulched ridges (about 20 cm in height) at 70cm interval by $20{\times}60cm$ spacing in the $4^{th}$ of May, 2010. Soil salinity was maintained at lower than 1.2 ds $m^{-1}$ during the growing period and did not result to salt injury in all plants. However, flooding injury very seriously led to plant death and plant mortality rates at $67{\pm}21$ and $82{\pm}9%$ of yam plants in the compost and no compost treatment, respectively, died by heavy flooding during the rainy summer season. The main reasons of the flooding injury included the decreased rainfall acceptable capacity (RAC) after the rising of water table and a slowdown of water infiltration rate after the formation of an impermeable soil crust in the furrow bottom with continuous and heavy downpour during the rainy summer season. The effect of compost treatment was not statistically observed because of the severe spatial difference caused by wet injury, although yam tuber yield was higher at 30 kg $10^{-1}$ in the compost treatment than in the no-compost treatment at 20 kg $10^{-1}$. However, the size of tuber ranged at 1.23 to 1.60 cm in diameter and 3.7 to 5.0 cm in length in all both treatment, which means they are still reproducible for the next cropping season. Conclusively, proper counter-flooding measure and soil salinity control critically important for successful yam production in Saemangeum Reclaimed Tidal Land.

Water Quality Evaluation on the Bottom Water of Masan Bay by Multivariate Analysis (다변량 해석에 의한 마산만 저층수의 수질평가)

  • Lee, Mu-kang;Hwang, Jeung-Wook;Choi, Young-Kwang
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • During the last two decades, many industrial complexes for heavy and chemical industries have been established along the Korean coastline, thereby increasing the pollution materials burden on the coastal environment of seawater. Masan Bay is one of the most polluted coastal areas in Korea and the main soures of pollutants are domestic and industrial wastewater from Masan, Changwon. This study was aimed to evaluate relationships among the physicochemical parameters in the bottom water of Masan bay and to examine environmental factors affecting to pollutions of seawater by factor analysis. 'rife factor loading, 1 is showed higher increasing inclination after 1989 year in station 1. The variance of pollutant materials is showed 43.7% in which the coastal inflow water is indicated external loadings(factor 1 : NO3--N, TN, factor 4 : SiO2-Si) corresponded to domestic sewage, industrial wastewater, and earth-sands in the bottom water of Masan bay And the internal loadings(factor 2 : SS, salinity, factor 3 . W.T., DO) are explained 33.8%'corresponded the phenomena of sedimentary layer and oxygen concentration. Therefore, The external loadings are explained by the higher factor pollutantal variance in Masan bay.

  • PDF

Acoustic characteristics of Anchovy schools, and visualization of their connection with water temperature and salinity in the Southwestern Sea and the Westsouthern Sea of South Korea (서해 남부와 남해 서부의 한 정점에서 수온 및 염분과 멸치 어군의 특징의 관련성 시각화)

  • Kang, Myounghee;Choi, Seok-Gwan;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • Morphological and positional characteristics of anchovy aggregations, confirmed by trawling, were examined in two locations of the southern part of theWest Sea (T1) and the western side of South Sea (T11) of South Korea. Morphological characteristics (mean length, height and area) of the anchovy aggregations at T1 were smaller than those at T11, however the positional characteristics (distributional depth and bottom depth) of the aggregations at T1 were larger than those at T11. Diverse dataset such as the ship's cruise track, the cruse map, and interpolated three-dimensional-like water temperature were visualized in multiple dimensions. For a comprehensive understanding of the anchovy aggregations within their surrounding circumstances, the interpolated water temperature transferred to the location of anchovy aggregations at both stations were visualized based on geospatial information. Using quantitative investigation, the overall range of change in water temperature and salinity of anchovy aggregations at stations was considerably small. However, the water temperature and salinity of anchovy aggregations at T11 were somewhat higher than those at T1.

Physical Marine Environment at the north of Wando and Gogeumdo Receiving the Effluents from Land (육수의 영향을 받는 완도 및 고금도 북부 해역의 해황 특성)

  • Lee Moon-Ock;Park Il-Heum
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.45-58
    • /
    • 2006
  • In order to grasp physical characteristics of Ganajin Bay receiving the effluents from land, a comprehensive field surve)'has been conducted at the north of Wando and Gogeumdo in 2002. Water temperature was most high in September while most low in December. A high temperature in September was inferred to have caused by the dispersion of warm fresh water with favor of a dominant wind in autumn. However, salinity and sigma-t in situ was most low in September while most high in December. A low salinity (or density) in September turned out to reflect the influence of a dense rainfall in summer. Water temperature, salinity and density at the surface layer were lower than those at the bottom layer, except for December. Their horizontal profiles suggested the influence of effluents such as Tamjin River. Particularly, time series of water temperature acquired near the sluice and at the north channel of Wando tended to rise at the flood flow but fall at the ebb flow in accordance with the tide. The form ratio of the tide in the study area was $0.31\~0.32$ and the amplitude of the tide appeared to increase towards the west. Northeastward or southwestward flows prevailed in this area but the residual flows were all northeastward with a magnitude of $3\~4cm/s$.