• 제목/요약/키워드: Bottom emission

검색결과 186건 처리시간 0.02초

Method to Enhance Color Gamut up to 89 % in Bottom Emission Active-Matrix Organic Light Emitting Device

  • Kim, Hwa-Kyung;Choi, Hong-Seok;Yoo, Dong-Hee;Kim, Woo-Chan;Yoon, Jong-Geun;Yang, Joong-Whan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.43-46
    • /
    • 2007
  • Though bottom emission AM-OLED has advantages in respect of mass production, the bottom emission type is underrated due to its low aperture ratio and low color gamut, compared with top emission type. In this paper, we demonstrate that the color gamut up to 89 % can be simply achieved by depositing dielectric multilayers, whose thicknesses are determined using an optical simulation program, prior to formation of Si layer.

  • PDF

Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구 (Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes)

  • 이운호;장원태;김종수;이상남
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

Al 음극 두께 변화에 따른 양면 발광 OLED의 발광 특성 (Emission Characteristics of Dual-Side Emission OLED with Al Cathode Thickness Variation)

  • 김지현;주성후
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.174-178
    • /
    • 2015
  • We studied emission characteristics for blue fluorescent dual-side emission OLED with Al cathode thickness variation. In the bottom emission OLED of Al cathode with 10, 15, 20, 25, 30, and 150 nm thickness, maximum luminance showed 36.1, 8,130, 9,300, 12,000, 13,000, and $12,890cd/m^2$, and maximum current efficiency showed 2, 8.8, 10, 10.5, 10.8, and 11.4 cd/A, respectively. The emission characteristics of the bottom emission seemed to be improved according to decrease of resistance as the thickness of Al cathode increase. In the top emission OLED of Al cathode with 10, 15, 20, 25, and 30 nm thickness, maximum luminance showed 4.3, 351, 131, 88.6, and $33.2cd/m^2$, and maximum current efficiency showed 0.23, 0.38, 0.21, 0.16, and 0.09 cd/A, respectively. It yielded the highest maximum luminance and maximum current efficiency in Al cathode thickness 15 nm. It showed a tendency to decrease as the thickness of Al cathode increase. The reason for this is due to decrease of transmittance with increasing of Al cathode thickness. The electroluminescent spectra of bottom and top emission OLED were not change.

혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향 (Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions)

  • 박종찬;정덕영;한광현
    • 한국토양비료학회지
    • /
    • 제45권2호
    • /
    • pp.260-265
    • /
    • 2012
  • 담수 토양에서의 토양호흡량은 호기 상태에 비해 매우 낮은 수준이나, 혐기 상태에서의 유기물의 분해는 담수 생태계의 탄소순환에 매우 중요한 역할을 한다. 한편, 비산회(fly ash), 석탄바닥재 (bottom ash)와 같은 석탄 연료 부산물들은 이산화탄소 발생을 저감하고 토양 탄소를 격리하는 효과가 있음이 보고된 바 있다. 이에 본 연구는 혐기조건 토양에서 석탄바닥재 단일 처리 및 석탄바닥재와 유기물 혼합 처리가 토양 미생물 호흡량 및 미생물 생체량 변화에 미치는 영향을 조사하였다. 이산화탄소 발생속도는 석탄바닥재 처리에 의해 유의하게 감소하였고, 처리수준에 따라서도 감소하는 것을 보였다. 유기물과 석탄바닥재를 혼합 처리하였을 때에도 발생속도가 감소되는 것을 확인하였다. 석탄바닥재 처리에 따라 토양미생물 생체량은 유의하게 증가하였고, 토양 중 암모니아태 질소, 질산태 질소, 유효인의 함량은 감소하는 경향이 있었다.

음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로- (An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise-)

  • 양관섭;유남구;박병전;김영완
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

상향식 공정분석을 통한 국내 유리산업의 온실가스 인벤토리 산정 (Greenhouse Gas Emission Inventory Calculation of Korean Glass Industry through the Bottom-up Production Process Analysis)

  • 백천현;정용주;유종훈
    • 경영과학
    • /
    • 제32권1호
    • /
    • pp.101-111
    • /
    • 2015
  • The glass production is classified into an energy intensive industry. This study develops a systematic procedure to derive Greenhouse Gas (GHG) emission inventory for the Korean glass industry. Based on the bottom-up approach in which the energy intensity in each production process is characterized, the EBs (energy balances) of glass production processes are derived. And the GHG emission is calculated for each of four types of glasses-flat glass, container glass, fiber glass, and LCD glass.

An Inverted Bottom Emission Organic Light Emitting Device with a New Electron Injection Layer.

  • Lee, You-Jong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.1023-1026
    • /
    • 2007
  • Highly efficient inverted bottom emission organic light emitting device (IBOLED) with a structure of ITO/EIL/Alq3/NPB/WO3/Al was investigated. To enhance electron injection from ITO cathode to Alq3 EML layer, we introduced ultra thin Al layer and Liq layer between ITO and Alq3. The device characteristics showed tune on voltage of 4.5V, the maximum luminance of 21100 Cd/m2 and current efficiencies of 3.56 Cd/A.

  • PDF

Top emission inverted organic light emitting diodes with $N_{2}$ plasma treated Al bottom cathodes

  • Kho, Sam-Il;Shon, Sun-Young;Kwack, Jin-Ho;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.889-892
    • /
    • 2003
  • Effects of $N_{2}$ plasma treatment of the Al bottom cathode on the characteristics of top emission inverted organic light emitting diodes (TEIOLEDs) were studied. TEIOLEDs were fabricated by depositing an Al bottom cathode, a tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$ emitting layer, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'diamine (TPD) hole transport layer, and an indium tin oxide (ITO) top anode sequentially. The Al bottom cathode layer was subjected to $N_{2}$ plasma treatment before deposition of the $Alq_{3}$ layer. X-ray photoelectron spectroscopy suggested that the existence of and the amount of $AIN_x$ between the $Alq_{3}$ emitting layer and the Al bottom cathode significantly affect the characteristics of TEIOLEDs. The maximum external quantum efficiency of the TEIOLED with an Ai bottom cathode subjected to $N_{2}$ plasma treatment for 30 s was about twice as high as that of the TEIOLED with an untreated Al bottom cathode.

  • PDF

전과정평가방법에 의한 쌍끌이 대형기선저인망의 온실가스 배출량 정량적 분석 (A quantitative analysis of greenhouse gases emissions from bottom pair trawl using a LCA method)

  • 양용수;이동길;황보규;이경훈;이지훈
    • 수산해양기술연구
    • /
    • 제51권1호
    • /
    • pp.111-119
    • /
    • 2015
  • The negative factors of fishery in environmental aspect of view are Greenhouse gas emission problems by high usage of fossil fuel, destruction of underwater ecosystem by bottom trawls, reduction of resources by fishing and damage of ecosystem diversity. Especially, the Greenhouse gas emission from fisheries is an important issue due to Canc$\acute{u}$n meeting, Mexico in 1992 and Kyoto protocol in 2005. However, the investigation on the GHG emissions from Korean fisheries did not much carry out. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from fishery. Here, we calculated the GHG emission from Korean bottom pair trawl fishery using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficient of the fishery is also calculated. The GHG emissions from the representative fishes caught by bottom pair trawl will be dealt with. Furthermore, the GHG emissions for the edible weight of fishes are calculated with consideration to the different consuming areas and slaughtering process also. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.