최근 발생하는 인터넷 상의 악성 행위는 많은 부분 악성 봇넷과 관련이 있다. DDoS 공격이나 스팸 발송, 악성코드 전파, 개인 정보 유출, 피싱 등 대부분의 악성 행위들이 봇넷에 의해 행해지고 있다. 이러한 봇넷을 탐지하고자 네트워크 단에서 악성 봇넷 탐지 시스템이 활발히 연구되고 있지만 특정한 프로토콜이나 행위, 공격을 수행하는 봇넷에만 적용 가능하다는 단점을 가지고 있다. 이에 본 논문에서는 악성 봇넷을 탐지하기 위한 척도 선정에 관한 연구를 진행하였다. 연구를 위해 악성 봇넷의 트래픽을 수집 및 분석하여 분석된 네트워크 트래픽의 특징에 기반 한 척도를 선정하였다. 본 연구를 통해 악성 봇넷을 탐지하는데 도움이 될 수 있을 것으로 기대한다.
최근 인터넷 상에서 봇넷을 이용한 사이버 공격이 증가하고 있으며, 이러한 공격들은 금전적 이득을 목적으로 하고 있어 범죄화 양상을 보이고 있다. 봇넷을 이용하는 사이버 공격으로는 스팸 발송, 분산서비스 거부(DDoS) 공격, 악성코드 및 맬웨어(malware) 전파, 피싱, 개인정보 유출 등이 있다. IRC나 HTTP 봇넷과 같은 중앙 봇넷은 그 탐지나 완화 방법의 연구가 다수 존재하지만, P2P 봇넷에 대한 연구는 아직 초기 단계이다. 본 논문에서는 다양한 네트워크 공격의 능동적 분석에 활용되는 허니넷을 이용하여 P2P 기반 Storm 봇 중의 하나안 Peacomm 봇이 발생시키는 트래픽을 분석하였다. 그 결과 Peacomm 봇이 P2P를 통해 광범위한 외부 네트워크의 좀비를 대상으로 다량의 UDP 패킷을 발생시키는 것을 확인하였다. 또한 이를 통해 Peacomm 붓이 봇넷의 규모를 유지하거나 확장한다는 것을 알 수 있었다. 이는 P2P 봇넷을 탐지하고 완화시킬 수 있는 대응기술 마련의 기초로써 사용될 수 있을 것으로 기대된다.
최근 봇넷(Botnet)은 탐지 기술을 피하기 위하여 C&C(Command and Control)서버 접속시 DNS(Domain Name System) 서비스를 이용하고 있다. DNS 서비스를 이용한 비정상 행위에 대응하기 위해서 DNS 트래픽 기반의 분석 연구가 필요하다. 본 논문에서는 좀비PC의 C&C서버 도메인주소 질의와 같은 DNS트래픽 기반의 비정상 도메인 분류(Classification)를 위해서 DNS트래픽 수집 및 지도학습(Supervised Learning)에 대해 연구한다. 특히, 본 논문에서는 PCA(Principal Component Analysis) 주성분분석 기술을 통해 DNS 기반의 분류시스템에서의 효과적인 분석 성분들을 구성할 수 있다.
최근 사이버 공간에서는 대규모 사이버 공격들을 위해 봇넷(Botnet)을 형성하여 자산 손실과 같은 경제적 위협뿐만 아니라 Stuxnet과 같은 국가적으로 위협이 되고 있다. 진화된 봇넷은 DNS(Domain Name System)를 악용하여 C&C 서버와 좀비간의 통신 수단으로 사용하고 있다. DNS는 인터넷에서의 주요 인프라이고, 무선 인터넷의 대중화로 지속적으로 DNS 트래픽이 증가되고 있다. 반면에, 도메인 주소를 이용한 공격들도 증가되고 있는 현실이다. 본 논문에서는 지도 학습 기반의 데이터 분류 기술을 이용한 DNS 트래픽 기반의 사이버 위협 도메인 탐지 기술에 대해 연구한다. 더불어, 개발된 DNS 트래픽을 이용한 사이버위협 도메인 탐지 시스템은 대용량의 DNS데이터를 수집, 분석, 정상/비정상 도메인 분류 기능을 제공한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4176-4197
/
2020
Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.
최근 DDoS 공격의 의도와 공격형태가 날로 다양해지고 그 피해규모가 심각해짐에 따라 DDoS를 탐지하고 이를 방어하기 위한 연구들이 활발하게 진행되고 있다. 한편, 봇넷은 이러한 DDoS 공격을 수행하는 도구로서 여러 연구기관들에 의해 새로운 위협적인 요소로 보고되고 있다. 본 연구에서는 보안상 상대적으로 취약하다고 알려져 있는 교내망에서 실제 봇넷 트래픽을 찾아내고 분석하였다. 이를 통해 봇넷의 특성을 밝혀내고 이와 관련된 연구의 기초자료로 사용될 수 있을 것이다.
서비스 거부공격, 즉 DDoS(Destribute Denial of Service) 공격은 정상적인 사용자가 서비스를 이용하지 못하도록 방해하는 공격 기법이다. DDoS 공격에 대응하기 위해서는 공격주체, 공격대상, 그리고 그 사이의 네트워크를 대상으로 다양한 기법들이 연구개발 되고 있으나 모두 완벽한 답이 되지 못하고 있는 실정이다. 본 연구에서는 DDoS 공격이 발생하는 근원지에서 공격의 사전 준비작업 혹은 공격에 이용되는 봇이나 악성코드 등이 발생시키는 네트워크 트래픽의 분석을 통해 발견된 악성코드 및 봇을 제거하거나 공격 트래픽을 중도에서 차단함으로써 DDoS 공격에 대해 효율적으로 대응하는 방법을 개발하는 것을 목적으로 한다.
IoT와 모바일 기기 사용이 급격히 증가하면서 IoT 기기를 대상으로 한 사이버 범죄 역시 늘어나고 있다. IoT 기기 중 Wireless AP(Access Point)를 사용할 경우 자체 보안 취약성으로 인해 패킷이 외부로 노출되거나 Bot과 같은 악성코드에 손쉽게 감염되어 DDoS 공격 트래픽을 유발하는 등의 문제점이 발견되고 있다. 이에 본 연구에서는 최근 급증하는 IoT 기기 대상 사이버 공격에 능동적으로 대응하기 위해 공공분야 시장 점유율이 높은 IoT 기기를 대상으로 침해사고 흔적을 수집하고, 침해사고 분석 데이터의 유효성을 향상시키기 위한 방법을 제시하였다. 구체적으로, 샘플 IoT 악성코드를 대상으로 동작 재현을 통해 취약점 발생 요인을 파악한 후 침해 시스템 내 주요 침해사고 흔적 데이터를 획득하고 분석하는 방법을 제시하였다. 이에 따라 대단위 IoT 기기를 대상으로 한 침해사고 발생시 이에 효율적으로 대응할 수 있는 체계를 구축할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.