• 제목/요약/키워드: Bossinesq approximation

검색결과 2건 처리시간 0.017초

주방용 후드시스템의 유동특성에 관한 수치적 연구 (A Numerical Study on the Flow Characteristics of Kitchen Hood System)

  • 임경빈;이광섭;이창희
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.359-369
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. This system is applied with $k-{\varepsilon}$ turbulent model and using incompressibility viscosity flow range and boundary condition which are related to Bossinesq approximation following density variation in control volume. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values.

주방용 후드시스템의 분리판 형상 변화에 따른 유동장, 온도 및 농도특성에 관한 수치적 연구 (A Numerical Study on the Characteristics of Flow Field, Temperature and Concentration Distribution According to Changing the Shape of Separation Plate of Kitchen Hood System)

  • 이광섭;이창희;임경빈
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.177-185
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values. The three models having different shapes have one exhaust port and the model which has the vent at the closest position to where pollutes are generated is discovered to be the most efficient model. Compare to the initial model (having no separation plate), it was $1.4-1.9\%$ more efficient at temperature distribution and $9.4-11.9\%$ more at $CO_2$ concentration distribution.