• Title/Summary/Keyword: Boronizing

Search Result 23, Processing Time 0.024 seconds

Characteristics of Boronized 316L Austenitic Stainless Steel by Powder Boronizing (분말붕소법을 이용한 오스테나이트계 스테인리스 316L강의 기계적 특성 향상을 위한 연구)

  • Cha, Byung-Chul;Bang, Hyun-Bae;Jo, Hyung-Ho;Jung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.55-59
    • /
    • 2011
  • In this study, the mechanical properties of boronized 316L austenitic stainless steel have been investigated. Boronizing was carried out in solid medium consisting of Ekabor powder at $900^{\circ}C$ and $1000^{\circ}C$ for 2, 4 and 8 hours, respectively. The properties of sample were analyzed by field emission scanning electron microscope, X-ray diffractometer, Glow discharge spectrometer, micro-hardness tester and ball-on-disk wear tester. Increasing the boronizing time and temperature, the hardness of boronized samples were shown over Hv 2000 and the thickness of boride layers were also increased linearly. XRD patterns of samples were revealed the presence of borides such as FeB, $Fe_2B$, CrB, $Cr_2B$ and $Ni_3B$. Friction coefficient of boronized STS 316L was shown the low value at $900^{\circ}C$ for 8 hours and $1000^{\circ}C$ for 4 hours, respectively.

The effect of Reductants on the electro-boronizing (전해침붕처리에서 환원제 첨가의 영향)

  • 최진일
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.2
    • /
    • pp.110-118
    • /
    • 1995
  • The effect of reductants (Ti, Si, Al, Mn, Fe) addition into molten Borax has been studied on oxidation resistance and the growth of boronized layer formed during electro-boronizing on the substrate such as carbon steel and STS 430. Experiments have been carried out at the current density of 0.5 A/$\cm^2$ and in temperature range of 600~$1000^{\circ}C$ for 1~5 hours. The penetrated depth of the boron increased with addition of reductants (Ti, Si, Al) and decreased with addition of Mn and Fe. But excessive addition of reductants inhibited the boronizing due to an increase in viscosity of electrolyte. Oxidation resistance of the boronized carbon steel was improved but that of the boronized STS 430 decreased.

  • PDF

A Study on the boronizing treatment of hot forgeability of STD61 steel by the paste method (열간단조용 STD 61강의 Boronizing 처리에 의한 표면 물성 변화)

  • 이영생
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.190-196
    • /
    • 1999
  • Hot forgeability of STD 61 steel was boronzed in boronizing paste mainly consisted of B4C and Na2B4O7 at various temperatures and times. Microhardness and thickness of boride layers were measured and distributions of B, Si, Cr and V on the cross section of specimen were observed by EPMA line analysis. Microscopic examination and results of EPMA showed that the boride layer consisted of two layers outer layer of FeB and inner layer of Fe2B. Microhardness of these boride layers was in the range of Hv 1800~2300. Thickness of boride layer increased with times and temperatures. Si-rich $\alpha$ layer was formed between boride layer and matrix. Element such as Cr concentration as Cr23(B, C)6 beneath the boride layer.

  • PDF

Electrolytic Boronizing on Carbon Steels in Fused Slat of Borax and Sodium Chloride Mixture (붕사와 염화나트륨 혼합용융욕에서 탄현강의 전해붕화처리)

  • 이두환;김정기;김한삼;김수식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • The electrolytic boronizing on carbon steels in the mixture of $Na_2B_4O_7$ and NaCl was conducted at 750~$950^{\circ}C$ for 1~6 hours under 0.5A/$\textrm{cm}^2$ current density. The micorostructrure and microheredness of boronized layer was also studien. The effect of the additive such as $CaCl_2$ or NaOH on the formation of boronized layer was also investigated. The boronized layer were composed of two sublayers, i.e., FeB and $Fe_2B$ , which have tooth structure. the average layer thinknesses of the low carbon steel and SM45C boronized at $900^{\circ}C$ for 4hours were 153 and 138 $\mu\textrm{m}$, respectively. The thickness of the twosublayers was significantly increased with increasing boronizing temperature. To obtain a single $Fe_2B$ layer without FeB sublayer, the boronized materials ware homegenized at $950^{\circ}C$ for 4 hours. It was fount that the single layer with a microhardness Hv$\thickapprox$ 1120 -1250 was formed. The calculated activation energies for formation of boronized layer on the low carbon steel and SM45C were 18.7 and 12.6 Kcal/mol, respectively.

  • PDF

Effect of Boronizing on Inconel 625 Superalloy for Improving Mechanical Properties (보로나이징처리에 따른 Inconel 625 초합금강의 기계적 특성 향상)

  • Kim, Dae-Wook;Kim, Yu-Sung;Lee, In-Sik;Cha, Yeo-Hun;Jeong, Kyeong-Hoon;Cha, Byung-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.316-320
    • /
    • 2019
  • The effect of boronizing on mechanical properties including wear behavior and hardness of Inconel 625 superalloy were investigated. The cross-section observation demonstrated that boronized samples were composed of multi-phase boride layer (CrxBx, Ni2B), diffusion layer, and substrate. The boride and diffusion layers were increased with increasing treatment temperature and holding time. However, CrxBx layer was partially peeled off when it treated 1000℃. Subsequently, boride layer was completely separated from substrate with increasing temperature and time. A partial peeling of CrxBx layer is not noticeably degraded mechanical properties. In particular, friction coefficient and wear resistance were enhanced in lack of CrxBx phase. Therefore, these results suggest that a Ni2B phase mainly contribute to wear behavior on boronized Inconel 625 superalloy.

Metal Injection Molding Process of $Mo_2FeB_2$ Boride Base Cermets

  • Tashiro, Hirofumi;Hirata, Kourou;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.765-766
    • /
    • 2006
  • [ $Mo_2FeB_2$ ] boride base cermets produced by a novel sintering technique, called reaction boronizing sintering through a liquid phase, have excellent mechanical properties and wear and corrosion-resistances. Hence, the cermets are applied to the injection molding die-casting machine parts and so on. We investigated that the effect of deoxidization and sintering temperature on mechanical properties and deformation of the MIM processed cermets. As a result, deoxidization temperature of 1323K and sintering temperature of 1518K were suitable. The MIM products of the cermets showed allowable dimensional accuracy and the same mechanical properties as the press-sintered ones.

  • PDF