• Title/Summary/Keyword: Borehole data

Search Result 286, Processing Time 0.032 seconds

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Time-series Analysis of Precision the Domestic Boring Investigation Data (국내 시추조사 자료 정밀도 시계열 분석)

  • Jang, Yonggu;Kim, Youngsun;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.15-21
    • /
    • 2015
  • Since the introduction of 'the rule for computerizing subsoil investigation results and its application' in 2007, the DB construction of the national geotechnical information by Ministry of Land, Transport and Maritime Affairs (MOLTMA) has been performed. According to the Integrated DB Center of National Geotechnical Information, there have been 180 thousands borehole information stored in the system. In this study, the time-series analyses of precision on the most used information, the depth of stratum and ground water level, were performed to evaluate the effect of the initiation of the rule established in 2007. The precisions were evaluated based on the statistical analyses using kurtosis and normal distribution. Based on the results, the increase of precision after 2007 and the affirmative effects of the rule established in 2007 are confirmed. Furthermore, the precision of the regional information can be achieved with the precision analyses on the information from various areas.

3D imaging of fracture aperture density distribution for the design and assessment of grouting works (절리 암반내 그라우팅 설계 및 성과 판단을 위한 절리틈새 밀도 분포의 3차원 영상화 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.113-120
    • /
    • 2004
  • Grouting works in fractured rocks have been performed to reinforce the underground and/or to block ground water flow at the foundation site of dam, bridge and so on. For the efficient grouting design, a prior knowledge of the fracture pattern of underground area to be grouted in very important. For the practical use, aperture sizes of open fractures that will be filled up with grouting materials will be kind of valuable information. Thus, the main purpose of this study is to develop a new technique (so called "GenFT") enable to form a three dimensional image of fracture aperture density distribution from Televiewer data. For this, the study is to focus on dealing with (1) estimating aperture size of each fracture automatically from Televiewer time image, (2) mapping extension of fracture planes on a given section, (3) evaluating aperture density distribution on the section by using both aperture size and fracture face mapping result of each fracture, (4) developing an algorithm that can transfer the previous results to any arbitrary(vertical and/or horizontal) section around the borehole. Since 3D imaging means "a strategy used to form an image of arbitrarily subdivided 2D sections with aperture density distribution", it will help avoid ambiguities of fracture pattern interpretation and hence will be of practical use not only for the design and assessment of grouting works but also for various engineering works. Examples of fields experiments are illustrated. It would seem that this technique might lead to reflecting future trend in underground survey.

  • PDF

Verification of grouting effectiveness using geophysical methods in fractured rock (지구물리탐사법을 활용한 절리 발달 암반 지역에서의 그라우팅 효과 판정)

  • Kim, Hyoung-Soo;Baik, Keon-Ha;Kim, Jung-Yul;Kim, Yoo-Sung;Sohn, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.175-198
    • /
    • 2002
  • The techniques using geophysical methods were adopted to obtain quantitative criteria for assessment of grouting effectiveness. Various surface and borehole geophysical surveys including seismic, GPR(ground penetrating radar), resistivity and electromagnetic methods were conducted in fractured rock pilot site before and after grouting execution. However, it is not enough that geophysical data provide criteria for field engineers to confirm the grouting effectiveness in that site even though there is somewhat difference before and after grouting. This study will be continued for the detailed criteria and assessment of grouting effectiveness in other sites.

  • PDF

Field Application of 3D seismic travel-time tomography (3차원 탄성파 지대공 토모그래피 현장 적용)

  • Moon, Yun-Seop;Ha, Hee-Sang;Lim, Harry;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.233-237
    • /
    • 2006
  • 3D travel time tomography was conducted to characterize the subsuface structure in the valley area. In this study, an area($200m{\times}200m$), where borehole informations were available to aid in the interpretation, was covered with wide source/receiver coverage. In data acquisition, both hole to hole and reverse VSP array was employed. For the inversion, 3D seismic traveltime tomography algorithm based on Fresnel volume was implemented. When compared 3D velocity cube with the geological survey and drilling logs, both results were matched well. From this, we concluded that 3D seismic travel time tomography has enough potential to the field application.

  • PDF

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF

Development of the 3-D Fracture Network Analysis and Visualization Software Modules (삼차원 불연속면 연결구조 해석 및 가시화 소프트웨어 모듈 개발)

  • Noh, Young-Hwan;Choi, Yosoon;Um, Jeong-Gi;Hwang, Sukyeon
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.261-270
    • /
    • 2013
  • As part of the development of the 3-D geologic modeling software, this study addresses on new development of software modules that can perform the analysis and visualization of the fracture network system in 3-D. The developed software modules, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, are coded on Microsoft Visual Studio platform using the MFC and OpenGL library supported by C++ program language. Each module plays a role in construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software modules for analysis and visualization of the 3-D fracture network system can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. All these benefits will further enhance the economic competitiveness of the domestic software industry.

Displacement and Stress Monitoring for Excavation Deep Foundation (인접지역의 깊은 터파기 굴착에서 변위 및 응력의 계측)

  • 원연호
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.27-55
    • /
    • 1999
  • The excavation works for deep foundation in urban areas have recently increased complaints of blasting vibration and settlement of ground level. Foundation must be excavated approximately up to 24-28m depths from the surface. The roads and subway line pass through the excavation area. The Dae-chung station is also located at the nearest distance 5-35m from the working site. To protect subway station and adjacient some structures from blasting and settlement, the level of ground vibration, displacements and stress were monitored and analyzed. The results can be summarized as follows ; 1. An empirical particle velocity equation were obtained by test blasts at Nassan Missi 860 Office tel construction site. $V{\;}={\;}K(D/\sqrt{W})^{-n}$, where the values for n and k are estimated tobe 0.371 and 1.551. From this ground vibration equation, the max. charge weight per delay time against distance from blasting point is calculated. Detailed blasting method is also presented. 2. To measure the horizontal displacement in directions perpendicular to the borehole axis, 6 inclinometers installed around working sites. The displacement at the begining was comparatively high because the installation of struts was delayed, but after its installation the values showed a stable trend. Among them, the displacement by 3 inclinometers installed on a temporary parking area showed comparatively high values, for example, the displacement measured at hole No. IC-l recoded the max. 47.04mm for 6 months and at hole No. IC-2 recorded the max. 57.33mm for 7 months. So, all of these data was estimated below a safe standard value 103mm. 3. Seven strain gauge meter was installed of measure the magnitude and change of stress acted on structs. The measured value of maximum stress was $-465{\;}kgf/\textrm{cm}^2,{\;}-338.4{\;}kgf/\textrm{cm}^2,{\;}302.3{\;}kgf/\textrm{cm}^2$ respectively. In compareto the allowable stress level of steel, they are estimated to be safe.

  • PDF

Thermal Conductivity of Granite from the KAERI Underground Research Tunnel Site (지하처분연구시설 부지 화강암의 열전도도)

  • Cho, Won-Jin;Kwon, Sang-Ki;Choi, Jong-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • To obtain the input data for the design and long-tenn performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The rock specimens were sampled at the various depths from the surface, and the thermal conductivity was measured under the dry and water-saturated conditions. Under the dry condition, the thermal conductivities of the granite rocks decrease with increasing porosity and range from 2.1 W/mK to 3.1 W/mK. The water-saturated rock samples showed greater thermal conductivities than the dry samples, and the thermal conductivities of the granite rocks range from 2.9 W/mK 3.6 W/mK. The anisotropy effects on the thermal conductivity of granite of the site seem to be insignificant.