• Title/Summary/Keyword: Boost converter of HEV

Search Result 6, Processing Time 0.031 seconds

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

Advanced LDC Test Bed Using Energy Recovery Technique for HEVs

  • Kim, Yun-Sung;Jung, Dong-Wook;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.911-919
    • /
    • 2013
  • This paper reports the development of test bed with the energy recovering technique using two-step boost converter. The device is utilized for LDC aging test of Hyundai Motor's LPI AVANTE HEV in mass production. The developed power recycle type test bed is designed as 1.5 kW class to test up to the maximum load power of LDC and is also designed to supply scant power supply up to 500 W after power recycle. The theoretical design analysis and operational characteristics analysis results of test bed are reported, and its practicality and reliability are verified through the test result. Also, the finally developed test bed confirms approximately 79~85 % energy saving effect compared to the usual traditional aging test system.

Energy Conversion System using a Novel Multi-Mode DC/DC Converter for Hybrid Electric Vehicles (새로운 멀티 모드 DC-DC 컨버터를 이용한 하이브리드 전기자동차용 전력변환 시스템)

  • Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2013
  • The rapidly growing demand for electric power systems in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require simpler, cost-effective, and higher performance components. In this paper, a novel power conversion system for hybrid electric vehicles is proposed for these needs. The proposed power conversion system reduces the conversion system cost while preserving same functionality. The proposed power conversion system can boost multi-sources to drive a traction motor and to store energy at the same time reducing number of switching components. In this paper, all operational modes of the proposed converter are explained in detail and verified by a computer simulation first. Then, the topology and operational modes are experimentally verified. Based on the results, the feasibility of the proposed multi-mode single leg power conversion system for EV and HEV applications is discussed.

Regenerative Current Control Method of Bidirectional DC/DC Converter for EV/HEV Application

  • Lee, Jung-Hyo;Jung, Doo-Yong;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.97-105
    • /
    • 2013
  • The control method of the bidirectional DC/DC converter for instantaneous regenerative current control is described in this paper. The general method to control the DC/DC converter is the output voltage control. However, the regenerative current cannot be controlled to be constant with this control method. To improve the performance of the conventional control method, the DC-link voltage of the inverter is controlled within the tolerance range by the instantaneous boost and buck operations of the bidirectional DC/DC converter. By the proposed control method, the battery current can be controlled to be constant regardless of the motor speed variation. The improved performance of the DC/DC converter controlled by the proposed control method is verified by the experiment and simulation of the system with the inverter and IPMSM(Interior Permanent Magnet Synchronous Motor) which is operated by the reduced practical speed profile.

Development of the Bidirectinal DC-DC Converter Control Algorithm for Hybrid Electric Vehicles (하이브리드 전기자동차용 양방향 DC-DC Converter제어 알고리즘 개발)

  • Oh Doo-Yong;Gu Bon-Gwan;Nam Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.346-349
    • /
    • 2004
  • The design of DC-DC converters for power electronic interfaces in power management systems for Hybrid Electric Vehicle (HEV) is a very challenging task. In this paper, the considered topology is the hi-directional buck-boost converter and inverter system. If we make the converter side DC link current the same as the inverter side DC link current in a converter-inverter system, no current will flow through the BC link capacitor and as a result, no DC link voltage variation occurs. This leads to the possibility of reducing small th size of DC link capacitors which are expensive, bulky. Therefore we propose the converter current controller which can manage to match inverter and converter current at the DC link.

  • PDF

Accurate Efficiency analysis of a Bi-directional converter for Hybrid Electrical Vehicles (하이브리드 차량 양방향 컨버터의 효율 분석)

  • Lee, Kook-Sun;Choy, Ick;Choi, Ju-Yeop;Song, Seung-Ho;Lee, Sang-Joon;Lee, Hyeoun-Dong;Kwon, Tae-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.158-160
    • /
    • 2009
  • HEV(Hybrid Electrical Vehicle)의 배터리와 전동기/발전기용 인버터 사이에 장착되는 양방향 컨버터는 boost/buck 동작을 수행함으로써 차량이 효율적으로 동작되도록 한다. 대표적인 단상(single-phase)의 Half bridge topology를 기준으로 효율을 분석 하였으며 효율 개선을 위하여 다상(multi-phase) 인터리빙, 소프트 스위칭 기술 등이 사용되고 있으나 여기서는 하드 스위칭 상태만 다룬다. Ideal한 컨버터의 경우 단순히 Duty비와 동작 영역에 따라서 출력 상태가 결정 되며 입력전력과 출력전력은 동일하다. 그러나 손실이 있는 경우 입/출력 전력은 동일하지 않게 되고, Duty 역시 변화 한다. 따라서 각 손실 파라미터를 Ideal한 Duty로 가정하고 구할 경우 오차가 발생한다. 또한, 스위칭 소자의 on/off시 발생하는 스위칭 손실은 실험 측정값과 계산값의 차이가 크기 때문에 이 역시 오차의 원인이 된다. 본 논문에서는 각 손실 파라미터와 입/출력 전력을 Duty에 대한 다항식으로 표현 하였다. 고차 다항식의 근을 수치 해석적으로 구하여 손실을 고려한 Duty비를 찾아 낼 수 있다. 스위칭 손실의 경우 데이터 시트에 주어진 손실 그래프를 테스트 영역까지 1차 근사하여 사용함으로써 정확한 효율 측정이 가능하도록 하였다.

  • PDF