• Title/Summary/Keyword: Booming noise

Search Result 74, Processing Time 0.022 seconds

Prediction of The Rail way Track's Vibration Behavior and Corresponding Experimental Verification (철도궤도의 동적특성 예측 및 실험적 검증 연구)

  • Park, Hee-Jun;Kim, Kwan-Ju;Kim, Jea-Chul;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.883-888
    • /
    • 2004
  • One of commercial rapid transits produces peculiar booming sound when passing through the slab-track tunnel. In order to analyze that tympanic membrane-pressing noise systematically, typical source-transfer path-response analysis was carried out. Considering the octave band of booming noise, work scope was confined to structure-borne noise analysis, especially the dynamic behaviour of railway tracks. Experimental modal analysis of railway tracks, composed of rail, rubber pad, sleeper, ballast, and ground were performed. The results shows that transversal bending modes of the rail are suspicious for the cause of the low band booming noise. Finite element analysis are made use of to match preceding experimental results, and plausible dynamic properties of track components are produced.

  • PDF

Reduction of Booming Noise Using Damper Clutch Disk on the Drive Shaft of Commercial Small Truck (상업용 소형 트럭의 구동축에서 댐퍼 클러치 디스크를 이용한 부밍 소음 저감)

  • Kim, Yong Dae;Choi, Byungjae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.377-383
    • /
    • 2015
  • Torsion mode or bending mode of drive-line for rear-wheel drive vehicle exists in low frequency band. If resonance exists there between natural mode of driveline and powertrain excitation force, drive-line will manifest excessive vibration response. Also, the vibration response can be transmitted to vehicle body and can induce booming noise. A vehicle in this study exhibits a booming noise problem under specific transmission gear condition. To draw performance improvement plan, finite element analysis technique was used. Modification was evaluated qualitatively and priorities were derived. Finally, effectiveness of best modification was verified through test and full vehicle FE analysis.

The Source Identification of Noise Using Characteristics of Transmission and the Reduction of Interior Noise for Changing the Input Factor (전달특성을 이용한 소음원 규명과 입력요소 변경에 의한 실내소음 저감)

  • Lee, You-Yub
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1254-1261
    • /
    • 2007
  • The structure has several types of noise and booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To use this method effectively, the concept of Multi-dimensional-analysis and Experimental Design are introduced to identify the contributions of each vibration sources and transmission paths to interior noise. It was used 3inputs/1output system and found the magnitudes and phases of the forces for minimizing the noise. Finally, the synthesized interior booming noise level is predicted by the vector synthesis diagram. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

Refinement of Car Interior Noise using the Vectorial Analysis Technique (벡터 해석법에 의한 차실 소음의 저감)

  • 이정권;민형선;심상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.7-9
    • /
    • 1991
  • 차량 주행시 내부공간의 소음레벨의 변화를 "Booming"소음이라고 통칭하며, 이 소음의 주 원인은 엔진 회전수의 2차 하모닉(harmonic) 주파수 성분으로 구조적인 경로를 통하여 인체에 전달되게 된다. Booming 소음은 변화가 클 때 탑승자에게 큰 고통을 주며 차량 가치평가에 커다란 마이너스 요인이 된 다. 본 연구에서는 이러한 Booming 현상을 파악하고 대처하는 방법의 하나 로서 벡터해석법을 사용하고자 한다. 사용하고자 한다.

  • PDF

The source identification of noise & vibration using characteristics of vibro-acoustic transmission (진동-음향 전달특성을 이용한 진동 및 소음원의 규명)

  • Oh, Jae-Eung;Kim, Dong-Sup;Kim, Woo-Taek;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.495-499
    • /
    • 2000
  • The booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Thus the engine mounting system must be cautiously designed to reduce the noise. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To effectively use the method, the concept of 'effectiveness' is introduced to identify the contributions of each vibration sources and transmission paths to interior noise. When the magnitudes and phases of the forces due to the engine vibration are changed, the synthesized interior booming noise level is predicted by the vector synthesis diagram. Thus, the optimum characteristics of the forces are obtained through the simulations of the vector synthesis analysis. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

  • PDF

Analysis of Booming Noise using Rigid Body Information of Parts (부재의 강체 정보를 이용한 부밍 소음의 해석)

  • Hwang, Woo-Seok;Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1699-1703
    • /
    • 2000
  • While the booming occurs in a cabin, the powertrain and subframes which are the main sources and paths of the booming, show the rigid body motions. This paper presents a technique to predict the booming noise in a car using the rigid body information of the important parts. The rigid body information comes from the CAD data, from which we can predict the response of the complex system. Since the mechanism of this technique is very similar to the finite element formulation, we can apply it to the complex system with ease.

  • PDF

Active Control of Road-Booming-Noise with Constraint Multiple Filtered-X LMS Algorithm

  • Oh, Shi-Hwan;Kim, Hyoun-Suk;Park, Young-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.3-7
    • /
    • 2000
  • Vibration generated by the non-uniform road profile propagates though each tire and the suspension and finally generates structure born noise in the interior of the passenger vehicle. In this paper, the road-booming-noise which has strong correlation with the vibration signals measured at the suspension system was compensated. Active noise control of the road-booming-noise is rather difficult to achieve because of its non-stationary characteristics. CMFX LMS (Constraint Multiple Filtered-X Least Mean Square) algorithm, which can track non-stationary process rather well, is applied. Comprison of the proposed method and the conventional MFX LMS (Multiple Filtered-X Least Mean Square) algorithm is made through the hardware-in-the-loop simulation and the feasibility of the proposed method is demonstrated with the experiment.

  • PDF

The Effect of Active Chassis Vibration Control on the Engine Booming Noise (능동 샤시 진동 제어가 실내 엔진 부밍 소음에 미치는 영향)

  • 정병보;박만복;이용욱;박영진;이종원;강구태;채창국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.991-995
    • /
    • 2002
  • The engine booming noise heard inside a vehicle's cabin is due to the engine vibration that's transferred to the chassis in the form of structural vibration and it often causes discomfort to the passenger. In an effort to seek out the possible relation between the engine booming noise and the engine vibration of a vehicle, a position on the engine mount was selected and the vibration transmission through the position was attenuated to observe the corresponding change in the noise level inside the cabin. A system consisting of an actuator and a hybrid controller that has both the feed-forward and feed-back capabilities was developed in order to carry out the experiment.

  • PDF

The Prediction of Weak Point about Vehicle Booming Noise Using the Acoustic Transfer Function (음향전달함수(ATF)를 이용한 부밍 소음 취약부 예측 연구)

  • Hwang, K.H.;Oh, H.J.;Choi, S.C.;Suh, J.K.;Hong, S.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.336-340
    • /
    • 2014
  • The noise and vibration have been evaluated by using the finite element model in the vehicle developing stage. The sound pressure of the vehicle compartment is predicted by the acoustic cavity model coupled with the body structure. In general, the structural model has been focused to study in the improvement of the noise. It is not easy to treat the structural model, instead the acoustic cavity model is relatively simple and aids in root cause analysis of vibro-acoustic issues. Therefore, the acoustic transfer function of the cavity is more efficient for finding out the main contribution parts of the vehicle booming noise. And examples about the run-up booming noise demonstrate the validity of the AFT analysis for improving the vibro-acoustic sensitivity.

  • PDF

Study on Reduction of Forklift's Booming Noise (지게차 부밍소음 저감에 대한 연구)

  • Park, S.T.;Kim, G.H.;Lee, J.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1487-1492
    • /
    • 2000
  • To identify forklift's booming noise in cabin under idling engine revolution, we discussed and applied conditioned input analysis. Acceleration signals at engine mounts and front window and rear window were considered as candidate input signals and output signal was sound pressure signal at driver's ear position in cabin. To reduce the numbers of the input signals, one idea were applied; Each one input signal from each input groups was selected, respectively because input signals in the same group were highly correlated. And Hilbert transform was used to determine the ordering of three selected inputs. Partial coherence functions, multiple coherence function and conditioned spectral density functions were investigate to the effects of booming noise by partial inputs.

  • PDF