• Title/Summary/Keyword: Boolean Factorization

Search Result 7, Processing Time 0.023 seconds

Boolean Factorization Using Two-cube Non-kernels (2-큐브 비커널을 이용한 부울 분해식 산출)

  • Kwon, Oh-Hyeong;Chun, Byung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4597-4603
    • /
    • 2010
  • A factorization is a very important part of multi-level logic synthesis. The number of literals in a factored form is an estimate of the complexity of a logic function, and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to identify two-cube nonkernel Boolean pairs from given expression. Experimental results on various benchmark circuits show the improvements in literal counts over previous other factorization methods.

Boolean Factorization Technique Using Two-cube Terms (2개의 곱항에서 공통인수를 이용한 논리 분해식 산출)

  • Kwon, Oh-Hyeong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.849-852
    • /
    • 2005
  • A factorization is an extremely important part of multi-level logic synthesis. The number of literals in a factored from is a good estimate of the complexity of a logic function, and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to identify two-cube Boolean subexpression pairs from given expression. Experimental results on various benchmark circuits show the improvements in literal counts over the algebraic factorization based on Brayton's co-kernel cube matrix.

  • PDF

Boolean Factorization (부울 분해식 산출 방법)

  • Kwon, Oh-Hyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.17-27
    • /
    • 2000
  • A factorization is an extremely important part of multi-level logic synthesis. The number of literals in a factored form is a good estimate of the complexity of a logic function. and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to build an extended co-kernel cube matrix using co-kernel/kernel pairs and kernel/kernel pairs together. The extended co-kernel cube matrix makes it possible to yield a Boolean factored form. We also propose a heuristic method for covering of the extended co-kernel cube matrix. Experimental results on various benchmark circuits show the improvements in literal counts over the algebraic factorization based on Brayton's co-kernel cube matrix.

  • PDF

Boolean Factorization Technique Using Two-cube Terms (2개의 곱항에서 공통인수를 이용한 논리 분해식 산출)

  • Kwon, Oh-Hyeong
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • A factorization is an extremely important part of multi-level logic synthesis. The number of literals in a factored form is a good estimate of the complexity of a logic function, and can be translated directly into the number of transistors required for implementation. Factored forms are described as either algebraic or Boolean, according to the trade-off between run-time and optimization. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to identify two-cube Boolean subexpression pairs from given expression. Experimental results on various benchmark circuits show the improvements in literal counts over the algebraic factorization based on Bryton's co-kernel cube matrix.

  • PDF

Courseware for Factorization of Logic Expressions (논리식 인수분해를 위한 코스웨어)

  • Kwon, Oh-Hyeong
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Generally, a logic function has many factored forms. The problem of finding more compact factored form is one of the basic operations in logic synthesis. In this paper, we present a new method for factoring Boolean functions to assist in educational logic designs. Our method for factorization is to implement two-cube Boolean division with supports of an expression. The number of literals in a factored form is a good estimate of the complexity of a logic function. Our empirical evaluation shows the improvements in literal counts over previous other factorization methods.

  • PDF

BOOLEAN RANK INEQUALITIES AND THEIR EXTREME PRESERVERS

  • Song, Seok-Zun;Kang, Mun-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1525-1532
    • /
    • 2011
  • The $m{\times}n$ Boolean matrix A is said to be of Boolean rank r if there exist $m{\times}r$ Boolean matrix B and $r{\times}n$ Boolean matrix C such that A = BC and r is the smallest positive integer that such a factorization exists. We consider the the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

A Boolean Factorization Using an Extended Two-cube Matrix (확장된 2-큐브 행렬을 이용한 부울 분해식 산출)

  • Kwon, Oh-Hyeong;Oh, Im-Geol
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.229-236
    • /
    • 2007
  • A factored form is a sum of products of sums of products, ..., of arbitrary depth. Factoring is the process of deriving a parenthesized form with the smallest number of literals from a two-level form of a logic expression. The factored form is not unique and described as either algebraic or Boolean. A Boolean factored form contains fewer number of literals than an algebraic factored form. In this paper, we present a new method for a Boolean factorization. The key idea is to identify two-cube Boolean subexpressions from given two-level logic expression and to extract divisor/quotient pairs. Then, we derive extended divisor/quotient pairs, where their quotients are not cube-free, from the generated divisor/quotients pairs. We generate quotient/quotient pairs from divisor/quotient pairs and extended divisor/quotient pairs. Using the pairs, we make a matrix to generate Boolean factored form based on a technique of rectangle covering.

  • PDF