• 제목/요약/키워드: Bookmark method

검색결과 12건 처리시간 0.035초

Comparison of results between modified-Angoff and bookmark methods for estimating cut score of the Korean medical licensing examination

  • Yim, Mikyoung
    • Korean journal of medical education
    • /
    • 제30권4호
    • /
    • pp.347-357
    • /
    • 2018
  • Purpose: The purpose of this study was to apply alternative standard setting methods for the Korean Medical Licensing Examination (KMLE), a criterion-referenced written examination, and to compare them to the conventional cut score used on the KMLE. Methods: The process and results of criterion-referenced standard settings (i.e., the modified-Angoff and bookmark methods) were evaluated. The ratio of passing and failing examinees determined using these alternative standard setting methods was compared to the results of the conventional criteria. Additionally, the external, internal and procedural evaluation of these methods were reviewed. Results: The modified-Angoff method yielded the highest cut score, followed sequentially by the conventional method and the bookmark method. The classification agreement between the modified-Angoff and bookmark methods was 0.720 measured by Cohen's ${\kappa}$ coefficient. The intra-panelist classification consistency of modified-Angoff method was higher than bookmark method. However, the inter-panelist classification consistency was vice versa. The standard setting panelists' survey results showed that the procedures of both methods were satisfactory, but panelists had more confidence in the results of the modified-Angoff method. Conclusion: The modified-Angoff method showed results that were more similar to those of the conventional method. Both new methods showed very high concordance with the conventional method, as well as with each other. The modified-Angoff method was considered feasible for adoption on the KMLE. The standard setting panelists responded positively to the modified-Angoff method in terms of its practical applicability, despite certain advantages of the bookmark method.

소셜 북마크의 시간 정보 클러스터링을 이용한 비디오 클립 생성 자동화 (Automated Video Clip Creation Using Time-based Social Bookmark Clustering)

  • 한성희;이재호;강대갑
    • 방송공학회논문지
    • /
    • 제15권1호
    • /
    • pp.144-147
    • /
    • 2010
  • 최근 콘텐츠의 소비 방식 변화는 비디오 클립이라는 형식과 소셜 비디오 공유 플랫폼의 활성화를 야기했다. 이러한 비디오 클립 공급의 자동화를 위하여 여러 가지 방법이 시도되고 있다. 본 논문에서는 콘텐츠 자체의 특성에 기인한 방법이 아닌 집단 지성에 의한 북마크 데이터의 클러스터링을 통하여 효과적인 클립을 획득하는 방법을 제안한다. 사용자에 의한 북마크 데이터를 2차원 평면의 점으로 표현한 뒤, 1차원의 북마크 누적 횟수 그래프를 이용하여 분할 클러스터링을 하는 방법은 콘텐츠 특성에 대한 이해 없이도 효과적인 하이라이트 추출을 가능하게 한다. 제시하는 실험 결과는 이 방법의 유용함을 보여준다.

협업 필터링을 활용한 태그 키워드 기반 개인화 북마크 검색 추천 시스템 (Personalized Bookmark Search Word Recommendation System based on Tag Keyword using Collaborative Filtering)

  • 변영호;홍광진;정기철
    • 한국멀티미디어학회논문지
    • /
    • 제19권11호
    • /
    • pp.1878-1890
    • /
    • 2016
  • Web 2.0 has features produced the content through the user of the participation and share. The content production activities have became active since social network service appear. The social bookmark, one of social network service, is service that lets users to store useful content and share bookmarked contents between personal users. Unlike Internet search engines such as Google and Naver, the content stored on social bookmark is searched based on tag keyword information and unnecessary information can be excluded. Social bookmark can make users access to selected content. However, quick access to content that users want is difficult job because of the user of the participation and share. Our paper suggests a method recommending search word to be able to access quickly to content. A method is suggested by using Collaborative Filtering and Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare by 'Delicious' and "Feeltering' with our system.

태그 네트워크를 이용한 개인화 북마크 추천시스템 (Personalized Bookmark Recommendation System Using Tag Network)

  • 엄태영;김우주;박상언
    • 한국전자거래학회지
    • /
    • 제15권4호
    • /
    • pp.181-195
    • /
    • 2010
  • 웹 2.0을 이끌어가는 원동력이라고 할 수 있는 일반 개인 사용자의 참여와 공유는 블로그, 소셜 네트워크(Social Network), 집단지성, 소셜 북마크(Social Bookmark), 태깅(Tagging) 등의 다양한 형태로 나타나고 있다. 이 중에서 소셜 북마크는 개인이 사용하는 북마크를 웹에 추가하여 공유함으로써, 다수의 사람들이 유용하다고 생각하는 북마크에 대한 정보를 기반으로 한 다양한 서비스를 제공하는 개념이다. 딜리셔스(Delicious.com)는 소셜 북마크 서비스의 대표적인 사례라고 할 수 있으며, 북마크에 사용자들이 붙인 태그를 이용하여 검색 서비스를 제공한다. 본 논문은 북마크 검색에 대해 개인화된 검색결과를 추천하기 위하여 사용자 태그를 기반으로 하여 딜리셔스가 제공하는 북마크들의 순위를 재순위화 하는 방법론을 제안하였다. 또한 태그유사도를 기반으로 한 태그 네트워크를 이용하여 사용자의 검색어에 의미적으로 유사한 다른 태그들도 순위에 반영될 수 있도록 하였다. 그리고 실험을 통하여 딜리셔스가 제시하는 순위에 비해 본 논문에서 제안하는 시스템의 재순위화 결과가 사용자들에게 더 만족스러우며 정확성도 높음을 확인하였다.

나이브 베이지안 학습법에 기초한 북마크 분류 에이전트 (Bookmark Classification Agent Based on Naive Bayesian Learning Method)

  • 최정민;김인철
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 춘계학술발표논문집
    • /
    • pp.405-408
    • /
    • 2000
  • 최근 인터넷의 발전으로 많은 정보와 지식을 우리는 인터넷에서 제공받을 수 있게되었다. 인터넷에 존재하는 정보는 수많은 웹서버에 산재되어 있으며, 정보의 위치는 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심있는 정보의 주소를 저장하기 위하여 웹브라우저 북마크(Bookmark)기능을 사용한다. 그러나 북마크 기능은 웹문서의 주소 저장에 일차적인 목적을 두고 있으며, 이후 북마크의 개수가 증가하면, 사용자는 북마크관리가 어렵게되므로 사용자 북마크 파일을 자동으로 분류하여 관리할수 있는 에이전트 기술을 사용하고자 한다. 대표적인 분류에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스기사 분류 에이전트인 NewT, 엔터테인먼트(Entertainment) 선별 에이전트인 Ringo 등이 있다. 이러한 시스템들은 분류할 대상에 따라 조금씩 다른 모습의 에이전트 기능을 보이고 있으며, 본 논문은 기계학습 이론중 교사학습 알고리즘인 나이브 베이지안 학습방법(Naive Bayesian Learning method)을 사용하여 사용자가 분류하지 못한 북마크를 자동으로 분류하는 단일 에이전트 기반 북마크 분류기를 설계, 구현하고자한다.

  • PDF

북 마크 자동 분류를 위한 학습 에이전트 (A Learning Agent for Automatic Bookmark Classification)

  • 김인철;조수선
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.455-462
    • /
    • 2001
  • 웹은 이제 인터넷의 중요한 서비스중의 하나가 되었다. 웹 공간을 탐색할 때 사용자들은 항해하는 동한 만나는 흥미 있는 사이트들을 기록하기 위해 북 마크 기능을 이용한다. 북 마크 기능을 이용할때 겪는 문제중의 하나가 거듭된 새로운 북 마크의 추가로 인해 북 마크 리스트의 길이가 길어지면 북 마크 리스트가 일관성 있는 구성을 잃어버리게 되어 실제적인 도움을 주기 어렵다는 것이다. 사용자가 북 마크 파일을 효율적이고 체계적으로 유지하기 위해서는 북 마크 파일에 추가되는 새로운 북 마크들을 카테고리별로 분류하여 신규 폴더를 찾아 삽입해주어야 한다. 본 논문에서는 대응되는 웹 문서들을 다운 받아 내용을 분서함으로써 자동으로 북 마크를 분류하는 BClassifier라 불리는 학습에이전트를 소개한다. BClassifier 에이전트를 위한 훈련 예의 주된 공급원은 바로 사용자가 명시적으로 이미 주제에 따라 몇 개의 북 마크 폴더들로 분류해놓은 북 마크들이다. 여기에 주제 카테고리들을 확대하고 이들에 대한 훈련 문서들을 확보하기 위해 추가적으로 Yahoo 사이트의 최상휘 카테고리들로부터 웹 문서들을 수집하여 훈련 예에 포함시킨다. BClassifier 에이전트는 잘 알여진 확률기반의 분류 기술이나 나이브 베이지안 학습 방법을 채용하고 있다. 본 논문에서는 BClassifier 에이전트에 관한 몇 가지 실험 결과를 소개하고 평가한다. 나이브 베이지안 방법과 k-최근접 이웃 방법, TFIDF 등과 같은 서로 다른 학습 방법들과 비교 실험 결과도 제시한다.

  • PDF

웹 기반 비동기/동기 사회활동을 지원하는 협력 시스템 (A Cooperation System Supporting Web-based Asynchronous/Synchronous Social Activities)

  • 최종명;이상돈;정석원
    • 디지털산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.39-49
    • /
    • 2009
  • In this paper, we classify web-based social network into two types: open and community, and model user behavior in social activities. After that, we also propose the combination of instant messaging and web system as the method of support asynchronous/synchronous social activities. Furthermore, we introduce ImCoWeb prototype system that supports both asynchronous social activities (ex. social bookmark, comment, rate, and data share) and synchronous ones (ex. real-time communication, file transfer, co-browsing, and co-work). Because it is built on the existing instant messaging, it reduces costs by reusing the facilities such as session management, user management, and security of instant messaging.

BClassifier : 나이브 베이지안 학습법에 기초한 북마크 분류 에이전트 (BClassifier : A Bookmark-Classification Agent Based on Naive Bayesian Learning Method)

  • 최정민;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.81-83
    • /
    • 2000
  • 최근 고성능 PC의 보급과 네트워크의 발달로 인하여 인터넷의 가용 정보가 폭발적으로 증가하고 있다. 이러한 추세에 따라 우리는 인터넷을 사용하여 많은 정보를 얻고 있다. 그러나 인터넷에 존재하는 정보는 수많은 웹 서버에 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심 있는 정보의 사이트를 재방문하기 위하여 웹 브라우저 북 마크 기능을 사용한다. 그러나, 북 마크를 효율적으로 사용하기 위해서는 북 마크 분류, 수정, 편집, 정렬등의 북 마크 관리가 필수적이지만 이와 같은 북 마크 관리 작업이 전반적으로 수작업으로 이루어져야 하는 단점이 있다. 이러한 문제점을 해결하기 위한 한가지 방법으로 웹 문서 분류를 위한 기계학습법을 적용하여 사용자의 북 마크를 카테고리별로 자동으로 분류, 재정렬해주는 북 마크 자동 분류 에이전트를 개발하고자 한다. 대표적인 분류 에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스 기사 분류 에이전트인 NewT, 엔터테인먼트 선별 에이전트인 Ringo 등이 있으며, 이러한 시스템들은 분류 대상과 분류 방법, 기능 등에서 차이를 보이고 있다. 본 논문에서는 대표적인 교사학습 방법인 나이브 베이지안 학습법을 사용하여 북 마크를 자동으로 분류하는 북 마크 자동 분류 에이전트를 설계, 구현하였다.

  • PDF

공학계열 대학생 물리 기초학력평가 문항분석 및 성취수준 설정 사례연구 (A Case Study on Item Analysis and Standard Setting of the Physics Basic Ability Test for Engineering College Students)

  • 이금호;정혜경
    • 공학교육연구
    • /
    • 제26권6호
    • /
    • pp.40-50
    • /
    • 2023
  • This study is to examine the validity of assessing basic-level proficiency in physics among incoming engineering freshmen through item analysis and standard setting. For empirical analysis, we examined the physics subject taken by the freshman class of 2021 at K University, considering its significance for engineering students. In this study, we initially performed item analysis utilizing both classical test theory and item response theory. Subsequently, leveraging the item and test information, we employed a modified Angoff method and the Bookmark method for standard setting. Consequently, the difficulty level initially set during item development was found to be higher than the actual performance level exhibited by the students. This study highlights a discernible disparity between the expected university standard and the real proficiency level of incoming freshmen in terms of basic academic ability in physics. Based on these research findings, a comprehensive discussion on the fundamental academic competence of engineering students was conducted, underscoring the necessity for formulating a tailored learning approach leveraging the outcomes from the basic ability test.

다차원 인덱스를 위한 벡터형 태깅 연구 (A Vector Tagging Method for Representing Multi-dimensional Index)

  • 정재윤;진현철;김종근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권9호
    • /
    • pp.749-757
    • /
    • 2009
  • 인터넷 사용이 대중화되면서 개인이 정보의 또는 검색할 주제에 따라 원하는 정보에 쉽게 접근할 수 있다. 이때 다양한 구조를 갖는 자료들의 속성을 잘 나타내는 메타데이터를 이용하면 검색의도에 보다 정확하게 부합하는 검색 결과를 얻을 수 있어 다양한 연구가 지속되고 있다. 본 연구는 소그룹의 사용자들이 공동으로 관심 있는 웹 콘텐츠의 즐겨 찾기를 공동으로 유지 관리하는 용도로 다차원 벡터형 태그를 제안한다. 제안하는 벡터형 태그는 정보 유용성을 나타내는 색인을 벡터방식으로 기술하고 이것을 활용해 정보의 분류 관리 재활용의 효율을 높이는 표현법이다. 벡터방식 태깅은 대상 키워드에 사용자들이 두 개 이상의 요소에 대한 우선순위를 부여하고 벡터 방식으로 표현한다. 이 때 벡터의 기본이 되는 벡터공간은 정보생성시간, 선호순위 등으로 구성한다. 벡터성분으로 산출할 수 있는 벡터크기가 정보의 유용성을 나타내며 순위측정의 기준이 된다. 제안방식에 의한 순위측정은 단순한 링크구조에 의해 측정된 순위와 비교하였을 때, 사용자의 검색의도에 부합하는 순위 정보를 제공하고 있다.