Purpose: The purpose of this study was to apply alternative standard setting methods for the Korean Medical Licensing Examination (KMLE), a criterion-referenced written examination, and to compare them to the conventional cut score used on the KMLE. Methods: The process and results of criterion-referenced standard settings (i.e., the modified-Angoff and bookmark methods) were evaluated. The ratio of passing and failing examinees determined using these alternative standard setting methods was compared to the results of the conventional criteria. Additionally, the external, internal and procedural evaluation of these methods were reviewed. Results: The modified-Angoff method yielded the highest cut score, followed sequentially by the conventional method and the bookmark method. The classification agreement between the modified-Angoff and bookmark methods was 0.720 measured by Cohen's ${\kappa}$ coefficient. The intra-panelist classification consistency of modified-Angoff method was higher than bookmark method. However, the inter-panelist classification consistency was vice versa. The standard setting panelists' survey results showed that the procedures of both methods were satisfactory, but panelists had more confidence in the results of the modified-Angoff method. Conclusion: The modified-Angoff method showed results that were more similar to those of the conventional method. Both new methods showed very high concordance with the conventional method, as well as with each other. The modified-Angoff method was considered feasible for adoption on the KMLE. The standard setting panelists responded positively to the modified-Angoff method in terms of its practical applicability, despite certain advantages of the bookmark method.
Recently the change of content consumption trend activated the social video sharing platform and the video clip itself. There have been intensive interests and efforts to automatically abstract compact and meaningful video clips. In this paper, we propose a method which use the clustering of the bookmark data created by collective intelligence instead of using the video content analysis. The partitional clustering of points in 2-dimensional space derived from the bookmark data make it possible to abstract highlights effectively. The method is enhanced by the 1-dimensional accumulated bookmark count graph. Experiments on the real data from KBS internet service show the effectiveness of the proposed method.
Web 2.0 has features produced the content through the user of the participation and share. The content production activities have became active since social network service appear. The social bookmark, one of social network service, is service that lets users to store useful content and share bookmarked contents between personal users. Unlike Internet search engines such as Google and Naver, the content stored on social bookmark is searched based on tag keyword information and unnecessary information can be excluded. Social bookmark can make users access to selected content. However, quick access to content that users want is difficult job because of the user of the participation and share. Our paper suggests a method recommending search word to be able to access quickly to content. A method is suggested by using Collaborative Filtering and Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare by 'Delicious' and "Feeltering' with our system.
The participation and share between personal users are the driving force of Web 2.0, and easily found in blog, social network, collective intelligence, social bookmarking and tagging. Among those applications, the social bookmarking lets Internet users to store bookmarks online and share them, and provides various services based on shared bookmarks which people think important.Delicious.com is the representative site of social bookmarking services, and provides a bookmark search service by using tags which users attach to the bookmarks. Our paper suggests a method re-ranking the ranks from Delicious.com based on user tags in order to provide personalized bookmark recommendations. Moreover, a method to consider bookmarks which have tags not directly related to the user query keywords is suggested by using tag network based on Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare the ranks by Delicious.com with new ranks of our system.
Proceedings of the Korea Multimedia Society Conference
/
2000.04a
/
pp.405-408
/
2000
최근 인터넷의 발전으로 많은 정보와 지식을 우리는 인터넷에서 제공받을 수 있게되었다. 인터넷에 존재하는 정보는 수많은 웹서버에 산재되어 있으며, 정보의 위치는 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심있는 정보의 주소를 저장하기 위하여 웹브라우저 북마크(Bookmark)기능을 사용한다. 그러나 북마크 기능은 웹문서의 주소 저장에 일차적인 목적을 두고 있으며, 이후 북마크의 개수가 증가하면, 사용자는 북마크관리가 어렵게되므로 사용자 북마크 파일을 자동으로 분류하여 관리할수 있는 에이전트 기술을 사용하고자 한다. 대표적인 분류에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스기사 분류 에이전트인 NewT, 엔터테인먼트(Entertainment) 선별 에이전트인 Ringo 등이 있다. 이러한 시스템들은 분류할 대상에 따라 조금씩 다른 모습의 에이전트 기능을 보이고 있으며, 본 논문은 기계학습 이론중 교사학습 알고리즘인 나이브 베이지안 학습방법(Naive Bayesian Learning method)을 사용하여 사용자가 분류하지 못한 북마크를 자동으로 분류하는 단일 에이전트 기반 북마크 분류기를 설계, 구현하고자한다.
The World Wide Web has become one of the major services provided through Internet. When searching the vast web space, users use bookmarking facilities to record the sites of interests encountered during the course of navigation. One of the typical problems arising from bookmarking is that the list of bookmarks lose coherent organization when the the becomes too lengthy, thus ceasing to function as a practical finding aid. In order to maintain the bookmark file in an efficient, organized manner, the user has to classify all the bookmarks newly added to the file, and update the folders. This paper introduces our learning agent called BClassifier that automatically classifies bookmarks by analyzing the contents of the corresponding web documents. The chief source for the training examples are the bookmarks already classified into several bookmark folders according to their subject by the user. Additionally, the web pages found under top categories of Yahoo site are collected and included in the training examples for diversifying the subject categories to be represented, and the training examples for these categories as well. Our agent employs naive Bayesian learning method that is a well-tested, probability-based categorizing technique. In this paper, the outcome of some experimentation is also outlined and evaluated. A comparison of naive Bayesian learning method alongside other learning methods such as k-Nearest Neighbor and TFIDF is also presented.
Journal of Korea Society of Digital Industry and Information Management
/
v.5
no.2
/
pp.39-49
/
2009
In this paper, we classify web-based social network into two types: open and community, and model user behavior in social activities. After that, we also propose the combination of instant messaging and web system as the method of support asynchronous/synchronous social activities. Furthermore, we introduce ImCoWeb prototype system that supports both asynchronous social activities (ex. social bookmark, comment, rate, and data share) and synchronous ones (ex. real-time communication, file transfer, co-browsing, and co-work). Because it is built on the existing instant messaging, it reduces costs by reusing the facilities such as session management, user management, and security of instant messaging.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.81-83
/
2000
최근 고성능 PC의 보급과 네트워크의 발달로 인하여 인터넷의 가용 정보가 폭발적으로 증가하고 있다. 이러한 추세에 따라 우리는 인터넷을 사용하여 많은 정보를 얻고 있다. 그러나 인터넷에 존재하는 정보는 수많은 웹 서버에 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심 있는 정보의 사이트를 재방문하기 위하여 웹 브라우저 북 마크 기능을 사용한다. 그러나, 북 마크를 효율적으로 사용하기 위해서는 북 마크 분류, 수정, 편집, 정렬등의 북 마크 관리가 필수적이지만 이와 같은 북 마크 관리 작업이 전반적으로 수작업으로 이루어져야 하는 단점이 있다. 이러한 문제점을 해결하기 위한 한가지 방법으로 웹 문서 분류를 위한 기계학습법을 적용하여 사용자의 북 마크를 카테고리별로 자동으로 분류, 재정렬해주는 북 마크 자동 분류 에이전트를 개발하고자 한다. 대표적인 분류 에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스 기사 분류 에이전트인 NewT, 엔터테인먼트 선별 에이전트인 Ringo 등이 있으며, 이러한 시스템들은 분류 대상과 분류 방법, 기능 등에서 차이를 보이고 있다. 본 논문에서는 대표적인 교사학습 방법인 나이브 베이지안 학습법을 사용하여 북 마크를 자동으로 분류하는 북 마크 자동 분류 에이전트를 설계, 구현하였다.
This study is to examine the validity of assessing basic-level proficiency in physics among incoming engineering freshmen through item analysis and standard setting. For empirical analysis, we examined the physics subject taken by the freshman class of 2021 at K University, considering its significance for engineering students. In this study, we initially performed item analysis utilizing both classical test theory and item response theory. Subsequently, leveraging the item and test information, we employed a modified Angoff method and the Bookmark method for standard setting. Consequently, the difficulty level initially set during item development was found to be higher than the actual performance level exhibited by the students. This study highlights a discernible disparity between the expected university standard and the real proficiency level of incoming freshmen in terms of basic academic ability in physics. Based on these research findings, a comprehensive discussion on the fundamental academic competence of engineering students was conducted, underscoring the necessity for formulating a tailored learning approach leveraging the outcomes from the basic ability test.
A Internet user can easily access to the target information by web searching using some key-words or categories in the present Internet environment. When some meta-data which represent attributes of several data structures well are used, then more accurate result which is matched with the intention of users can be provided. This study proposes a multiple dimensional vector tagging method for the small web user group who interest in maintaining and sharing the bookmark for common interesting topics. The proposed method uses vector tag method for increasing the effect of categorization, management, and retrieval of target information. The vector tag composes with two or more components of the user defined priority. The basic vector space is created time of information and reference value. The calculated vector value shows the usability of information and became the metric of ranking. The ranking accuracy of the proposed method compares with that of a simply link structure, The proposed method shows better results for corresponding the intention of users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.