도서 취향을 고려하여 도서를 추천해주는 도서 추천 시스템은 사용자의 독서 경험과 독서에 대한 인식 개선에 효과적이다. 축적된 사용자 평점 기록이 상대적으로 적은 도서의 경우 추천 정확도에 한계가 나타난다. 본 연구에서는 상대적으로 풍부한 사용자 평점 데이터를 가진 영화 평점 정보를 이용하여 사용자에게 맞춤형 도서를 추천하는 추천 시스템을 제안한다. 제안하는 방법을 통해 도서 추천의 정확도를 높이고 보다 다양한 종류의 추천을 수행하는데 효과적임을 보였다. 영화 평점 데이터를 활용한 도서추천 시스템은 도서 분야 외 타 미디어 플랫폼의 데이터를 도서추천에 활용하는 의미 있는 시도가 될 것으로 예상한다.
본 연구는 기존의 도서추천 시스템 연구에서 간과되어 온 도서이용의 맥락 요소를 파악하기 위해, 다양한 도서탐색 배경을 지닌 적극적인 도서 이용자 15명을 대상으로 6가지 도서탐색 상황에서 생성하는 내용을 사고구술(think-aloud) 프로토콜을 통해 수집하였다. 수집된 도서이용 내용은 내용분석 과정을 통해 독자자문 서비스의 이론적 개념인 '어필 요소(appeal factor)'를 토대로 도서이용에 영향을 미치는 내부 어필 요소와 외부 어필 요소를 각각 식별하였으며, 도서탐색에 사용하는 정보원과 탐색방법 관련 개념들을 또한 세분화하였다. 본 연구의 결과는 향후 도서추천 시스템 설계에 의미 있는 속성 데이터를 추출하고 반영하는 데 사용될 수 있을 것이다.
Thanks to the development of social media, general users become information and knowledge providers. But customers also feel difficulty to decide their purchases due to numerous information. Although recommender systems are trying to solve these information/knowledge overload problem, it may be asked whether they can honestly reflect customers' preferences. Especially, customers in book market consider contents of a book, recency, and price when they make a purchase. Therefore, in this study, we propose a methodology which can reflect these characteristics based on topic modeling and provide proper recommendations to customers in book market. Through experiments, our methodology shows higher performance than traditional collaborative filtering systems. Therefore, we expect that our book recommender system contributes the development of recommender systems studies and positively affect the customer satisfaction and management.
오늘날 인터넷의 전반적인 보급 및 전자상거래의 확산으로 인하여 정보의 홍수를 이루게 되었고, 고객들은 자신이 원하는 제품이나 서비스를 선택하기 위해서 정보를 탐색하는 작업이 더욱 어려워지게 되었다. 이러한 고객들에게 좀 더 편리하게 자신이 원하는 제품이나 서비스를 선택하도록 도와주는 것이 추천 시스템으로서, 고객 관계 관리의 중요한 부분으로 자리 잡게 되었다. 본 연구에서는, 인터넷 서점을 이용하는 고객에게 그가 관심을 가질만한 서적을 추천하여 줌으로써 구입할 서적의 선택을 도와주는 서적 추천 시스템을 개발하였다. 기존의 서적 추천 시스템 개발에 협업 필터링 기법이 주로 활용되어 왔다. 하지만 협업 필터링 기법을 적용하기 위해서는 각 서적에 대한 구매자들의 평가치가 수집되어야 하는데, 이러한 평가치들은 시스템 개발 이전에 오랜 기간에 걸쳐 정교한 계획 하에서 수집되어야 한다. 더욱이 구매자들이 평가치 제공에 협조하지 않을 경우에는 추천 시스템 자체의 작동이 불가능하게 된다. 그러므로 본 연구에서는 고객들의 구매기록만으로 서적 추천을 수행할 수 있도록 사례기반추론 기법을 활용하여 시스템을 개발 하였는데, 서적의 소분류 코드를 예측하는 상황에서 약 40% 수준의 적중률을 보였다.
In the studies for the recommender systems which solve the information overload problem of users, the use of transactional data has been continuously tried. Especially, because the firms can easily obtain transactional data along with the development of IoT technologies, transaction-based recommender systems are recently used in various areas. However, the use of transactional data has limitations that it is hard to reflect domain knowledge and they do not directly show user preferences for individual items. Therefore, in this study, we propose a method applying the word embedding in the transaction-based recommender system to reflect preference differences among users and domain knowledge. Our approach is based on SAR, which shows high performance in the recommender systems, and we improved its components by using FastText, one of the word embedding techniques. Experimental results show that the reflection of domain knowledge and preference difference has a significant effect on the performance of recommender systems. Therefore, we expect our study to contribute to the improvement of the transaction-based recommender systems and to suggest the expansion of data used in the recommender system.
이 연구에서는 최근에 주목받고 있는 협업 필터링 기법을 중심으로 여러 가지 추천 기법을 살펴본 후 대출대상 도서의 추천 시스템을 구축하였다. 연관성 규칙 기반 기법, 협업 필터링 기법, 내용기반 필터링 기법을 응용하여 실제 대학도서관에서 특정 이용자가 대출할 만한 도서를 추천하는 시스템을 구현하고 각 기법의 추천 성능을 평가하였다. 실험 결과 대출대상 도서를 추천하는 데 있어 협업 필터링 기법과 내용기반 필터링 기법을 각각 따로 적용하는 것보다 두 기법을 함께 이용한 혼합형 필터링 추천 기법이 더욱 효과적인 것으로 나타났다.
추천 시스템은 사용자의 선호도를 분석하고, 아이템들에 대한 사용자의 선호도를 예측하여 책, 영화, 음악 등과 같은 아이템을 사용자에게 추천하는 시스템이다. 추천 시스템에서 가장 널리 활용하는 기법은 협동적 여과 기법이며, 협동적 여과 기법은 추천 대상 사용자에게 아이템을 추천할 때 유사 사용자의 평가 정보를 이용한다. 협동적 여과 기반 추천은 시스템 공격자가 악의적 목적을 가지고 아이템에 대한 평가를 조작하였을 경우 추천 성능이 저하되며, 이와 같은 추천 시스템에 대한 악의적 행위를 추천 공격이라 한다. 지속적으로 변화하는 평가 데이터를 데이터 스트림 관점에서 분석하면 추천 시스템의 공격을 예측할 수 있다. 본 논문에서는 협동적 여과 기반 추천 시스템에서 아이템 평가의 스트림 추세를 이용하여 추천 시스템에 대한 공격을 탐지하는 방법을 제안한다. 평가 데이터를 구성하는 아이템 평가 정보는 시간에 따라 수시로 변화되는 특성을 나타내기 때문에 일정 주기에 따라 아이템의 평가 변화를 측정하면 추천 시스템의 공격을 탐지할 수 있다. 본 논문에서 제안하는 기법은 연속적으로 입력되는 평가 스트림을 공격 탐지 검사 주기를 기반으로 정상적인 스트림 추세와 비교하여 비정상적인 스트림 추세를 탐지한다. 본 논문에 제안한 기법을 추천 공격에 적용하면 추천 시스템의 운용성과 평가 데이터의 재사용성을 향상시킬 수 있다. 본 논문에서 제안한 기법을 다양한 실험을 통해 효과를 확인하였다.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.
사용자의 정보 과부하 문제의 해결을 목표로 하는 추천 시스템은 개인의 선호를 추론하여 이에 부합하는 아이템을 필터링하여 제공한다. 추천 시스템 관련 기법 중 가장 성공적으로 알려져 있는 협업 필터링은 최근까지 다양한 성능 개선 시도가 이루어지고 있으며 여러 분야에 적용되고 있다. 본 연구에서는 이와 같은 협업 필터링의 성공에 기반하여 소비자의 구매 의사결정에 영향을 미칠 수 있는 시각 정보를 추천 시스템에 반영할 수 있는 VizNCS를 제안한다. 이를 위하여 먼저, 비정형 데이터인 시각 정보에서 특징을 추출하기 위해 합성곱 신경망을 사용하였다. 다음으로, 합성곱 신경망으로 부터 도출된 이미지 특성 정보를 추천 시스템에 반영하기 위하여 기존의 딥러닝 기반의 추천 시스템 중 다른 정보로 확장이 용이한 NCF 기법을 응용하였다. 본 연구에서 제안한 VizNCS의 성능 비교 실험 결과 기본 NCF보다 더 높은 성능을 보였으며 카테고리별 성능 비교 실험을 통해 시각 정보에 영향을 받는 카테고리와 그렇지 않은 카테고리를 발견하였다. 결론적으로 본 연구에서 제안한 VizNCS는 시각정보를 개인화된 추천에 직접 활용함에 따라 시각 정보에 영향을 받는 소비자들의 구매의사결정 행태를 반영할 수 있어 추천 시스템 성능 향상에 기여하였다. 또한, 지금까지 활용이 미미했던 이미지 데이터로 추천 시스템의 원천 데이터 영역을 확장함에 따라 다양한 원천 데이터의 활용 방안을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.