• Title/Summary/Keyword: Book Recommender Systems

Search Result 14, Processing Time 0.023 seconds

Attack Detection in Recommender Systems Using a Rating Stream Trend Analysis (평가 스트림 추세 분석을 이용한 추천 시스템의 공격 탐지)

  • Kim, Yong-Uk;Kim, Jun-Tae
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.85-101
    • /
    • 2011
  • The recommender system analyzes users' preference and predicts the users' preference to items in order to recommend various items such as book, movie and music for the users. The collaborative filtering method is used most widely in the recommender system. The method uses rating information of similar users when recommending items for the target users. Performance of the collaborative filtering-based recommendation is lowered when attacker maliciously manipulates the rating information on items. This kind of malicious act on a recommender system is called 'Recommendation Attack'. When the evaluation data that are in continuous change are analyzed in the perspective of data stream, it is possible to predict attack on the recommender system. In this paper, we will suggest the method to detect attack on the recommender system by using the stream trend of the item evaluation in the collaborative filtering-based recommender system. Since the information on item evaluation included in the evaluation data tends to change frequently according to passage of time, the measurement of changes in item evaluation in a fixed period of time can enable detection of attack on the recommender system. The method suggested in this paper is to compare the evaluation stream that is entered continuously with the normal stream trend in the test cycle for attack detection with a view to detecting the abnormal stream trend. The proposed method can enhance operability of the recommender system and re-usability of the evaluation data. The effectiveness of the method was verified in various experiments.

A Recommender System Using Factorization Machine (Factorization Machine을 이용한 추천 시스템 설계)

  • Jeong, Seung-Yoon;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.707-712
    • /
    • 2017
  • As the amount of data increases exponentially, the recommender system is attracting interest in various industries such as movies, books, and music, and is being studied. The recommendation system aims to propose an appropriate item to the user based on the user's past preference and click stream. Typical examples include Netflix's movie recommendation system and Amazon's book recommendation system. Previous studies can be categorized into three types: collaborative filtering, content-based recommendation, and hybrid recommendation. However, existing recommendation systems have disadvantages such as sparsity, cold start, and scalability problems. To improve these shortcomings and to develop a more accurate recommendation system, we have designed a recommendation system as a factorization machine using actual online product purchase data.

Development of the Recommender System of Arabic Books Based on the Content Similarity

  • Alotaibi, Shaykhah Hajed;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.175-186
    • /
    • 2022
  • This research article develops an Arabic books' recommendation system, which is based on the content similarity that assists users to search for the right book and predict the appropriate and suitable books pertaining to their literary style. In fact, the system directs its users toward books, which can meet their needs from a large dataset of Information. Further, this system makes its predictions based on a set of data that is gathered from different books and converts it to vectors by using the TF-IDF system. After that, the recommendation algorithms such as the cosine similarity, the sequence matcher similarity, and the semantic similarity aggregate data to produce an efficient and effective recommendation. This approach is advantageous in recommending previously unrated books to users with unique interests. It is found to be proven from the obtained results that the results of the cosine similarity of the full content of books, the results of the sequence matcher similarity of Arabic titles of the books, and the results of the semantic similarity of English titles of the books are the best obtained results, and extremely close to the average of the result related to the human assigned/annotated similarity. Flask web application is developed with a simple interface to show the recommended Arabic books by using cosine similarity, sequence matcher similarity, and semantic similarity algorithms with all experiments that are conducted.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.