• 제목/요약/키워드: Bone-tendon interface healing

검색결과 3건 처리시간 0.018초

Osteogenic Potential of the Periosteum and Periosteal Augmentation for Bone-tunnel Healing

  • Youn Inchan;Suh J-K Francis;Choi Kuiwon
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.101-110
    • /
    • 2005
  • Periosteum and periosteum-derived progenitor cells have demonstrated the potential for stimulative applications in repairs of various musculoskeletal tissues. It has been found that the periosteum contains mesenchymal progenitor cells capable of differentiating into either osteoblasts or chondrocytes depending on the culture conditions. Anatomically, the periosteum is a heterogeneous multi-layered membrane, consisting of an inner cambium and an outer fibrous layer. The present study was designed to elucidate the cellular phenotypic characteristics of cambium and fibrous layer cells in vitro, and to assess whether structural integrity of the tendon in the bone tunnel can be improved by periosteal augmentation of the tendon­bone interface. It was found the cells from each layer showed distinct phenotypic characteristics in a primary monolayer culture system. Specifically, the cambium cells demonstrated higher osteogenic characteristics (higher alkaline phosphatase and osteocalcin levels), as compared to the fibrous cells. Also in vivo animal model showed that a periosteal augmentation of a tendon graft could enhance the structural integrity of the tendon-bone interface, when the periosteum is placed between the tendon and bone interface with the cambium layer facing toward the bone. These findings suggest that extra care needs to be taken in order to identify and maintain the intrinsic phenotypes of the heterogeneous cell types within the periosteum. This will improve our understanding of periosteum in applications for musculoskeletal tissue repairs and tissue engineering.

회전근개파열에서 힘줄뼈부착부 개선을 위한 다상 스캐폴드의 유용성 (Usefulness of Multiphase Scaffolds for Improving Tendon to Bone Healing for Rotator Cuff Tears in Shoulder)

  • 이상철
    • Clinical Pain
    • /
    • 제19권2호
    • /
    • pp.59-63
    • /
    • 2020
  • Rotator cuff tear is often cited as a reason for shoulder pain and dysfunction in patients > 40 years of age. Surgical repair of rotator cuff tear is one of the most commonly performed orthopedic surgical procedures. Until now, the success rate of surgical repair for rotator cuff tear has not been satisfactory. Many factors influence the process of rotator cuff repair such as the presence of tendinosis and fatty infiltration, but the main factor is the difficulty in achieving healing at the tendon to bone interface. There is a clinical need for bioengineering approaches to promote regeneration of the native enthesis and reduce the poor outcomes after surgical repair. Toward this end, the design and fabrication of multiphasic or hierarchically structured scaffolds have received great attention. This manuscript deals with information on the tendon to bone interface and tries to find out why a multiphasic scaffold is necessary to reproduce it and considerations that need to be taken into to make an ideal scaffold.

Effect of suprascapular nerve injury on muscle and regenerated enthesis in a rat rotator cuff tear model

  • Kenichiro Eshima;Hiroki Ohzono;Masafumi Gotoh;Hisao Shimokobe;Koji Tanaka;Hidehiro Nakamura;Tomonoshin Kanazawa;Takahiro Okawa;Naoto Shiba
    • Clinics in Shoulder and Elbow
    • /
    • 제26권2호
    • /
    • pp.131-139
    • /
    • 2023
  • Background: Massive rotator cuff tears (RCTs) are complicated by muscle atrophy, fibrosis, and intramuscular fatty degeneration, which are associated with postoperative tendon-to-bone healing failure and poor clinical outcomes. We evaluated muscle and enthesis changes in large tears with or without suprascapular nerve (SN) injury in a rat model. Methods: Sixty-two adult Sprague-Dawley rats were divided into SN injury (+) and SN injury (-) groups (n=31 each), comprising tendon (supraspinatus [SSP]/infraspinatus [ISP]) and nerve resection and tendon resection only cases, respectively. Muscle weight measurement, histological evaluation, and biomechanical testing were performed 4, 8, and 12 weeks postoperatively. Ultrastructural analysis with block face imaging was performed 8 weeks postoperatively. Results: SSP/ISP muscles in the SN injury (+) group appeared atrophic, with increased fatty tissue and decreased muscle weight, compared to those in the control and SN injury (-) groups. Immunoreactivity was only positive in the SN injury (+) group. Myofibril arrangement irregularity and mitochondrial swelling severity, along with number of fatty cells, were higher in the SN injury (+) group than in the SN injury (-) group. The bone-tendon junction enthesis was firm in the SN injury (-) group; this was atrophic and thinner in the SN injury (+) group, with decreased cell density and immature fibrocartilage. Mechanically, the tendon-bone insertion was significantly weaker in the SN injury (+) group than in the control and SN injury (+) groups. Conclusions: In clinical settings, SN injury may cause severe fatty changes and inhibition of postoperative tendon healing in large RCTs. Level of evidence: Level Basic research, controlled laboratory study.