• Title/Summary/Keyword: Bone processing

Search Result 201, Processing Time 0.027 seconds

Process Metamorphosis and On-Line FEM for Mathematical Modeling of Metal Rolling-Part II: Application

  • Zamanian, A.;Nam, S.Y.;Shin, T.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • In this paper, we examine the application of a new concept - on-line FE model in various metal rolling processes. This technology allows for completion of process simulation within a tiny fraction of a second without losing the high level of prediction accuracy inherent to FEM. The procedure is systematically demonstrated through the design of actual on-line models for the prediction of the width spread in horizontal rolling of the slab using a dog bone profile and horizontal rolling of the strip with a strip profile. The validity and the prediction accuracy of the on-line FE models were analyzed and discussed.

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Quantitative Changes in Phenolic Compounds of Safflower (Carthamus tinctorius L.) Seeds during Growth and Processing

  • Kim, Eun-Ok;Lee, Jun-Young;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Phenolic compounds in safflower seeds were recently found to stimulate bone formation and increase plasma HDL cholesterol levels in estrogen deficient rats, and to inhibit melanin synthesis. Nine phenolic compounds: $N-feruloylserotonin-5-O-{\beta}-D-glucoside,\;8'-hydroxyarctigenin-4'-O-{\beta}-D-glucoside,\;luteolin-7-O-{\beta}-D-glucoside$, N-(p-coumaroyl)serotonin, N-feruloylserotonin, 8'-hydroxy arctigenin (HAG), luteolin (LT), $acacetin-7-O-{\beta}-D-glucuronide$ (ATG) and acacetin (AT), were quantified by HPLC in safflower (Carthamus tinctorius L.) seeds during growth and processing. During growth, levels of the nine phenolic compounds in the seeds increased progressively with increasing growth stages, reached a maximum on July 30 (42nd day after flowering), and then remained relatively constant. During the roasting process, levels of phenolic compounds, except HAG, LT and AT, generally decreased with increased roasting temperature and time, whereas those of HAG, LT and AT increased progressively with increased roasting temperature and time. During the steaming process, levels of other phenolic compounds except HAG and AT generally tended to increase with increased steaming time, whereas those of HAG and AT were scarcely changed. During the microwave treatment, quantitative changes of phenolic compounds were similar to the roasting process, although there were some differences in levels of phenolic compounds between two heat treatments. These results suggest that the steamed safflower seeds after harvesting on late July may be useful as potential dietary supplement source of phenolic compounds for prevention of several pathological disorders, such as atherosclerosis and osteoporosis and aging.

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.

Anatomical variations of trabecular bone structure in intraoral radiographs using fractal and particles count analyses

  • Amer, Maha Eshak;Heo, Min-Suk;Brooks, Sharon L.;Benavides, Erika
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.5-12
    • /
    • 2012
  • Purpose : This study was performed to evaluate possible variations in maxillary and mandibular bone texture of normal population using the fractal analysis, particles count, and area fraction in intraoral radiographs. Materials and Methods : Periapical radiographs of patients who had full mouth intraoral radiographs were collected. Regions of interest ($100{\times}100$ pixels) were located between the teeth of the maxillary anterior, premolar, and molar area, as well as the mandibular anterior, premolar, and molar areas. The fractal dimension (FD) was calculated by using the box counting method. The particle count (PC) and area fraction (AF) analyses were also performed. Results : There was no significant difference in the FD values among the different groups of age, gender, upper, and lower jaws. The mean FD value was $1.49{\pm}0.01$. The mean PC ranged from 44 to 54, and the mean AF ranged from 10.92 to 11.85. The values of FD, PC, and AF were significantly correlated with each other except for the upper molar area. Conclusion : According to the results, patients with normal trabecular pattern showed a FD of approximately 1.5. Based on these results, further investigation would be recommended if the FD value of patient significantly differenct from this number, since the alteration of this value indicates microstructural modification of trabecular pattern of the jaws. Additionally, with periapical radiographs, simple and cost-effective, PC and AF could be used to assess the deviation from the normal.

Design and Implementation of A Medical Image Guided System for Vertebroplasty (척추성형술을 위한 의료 영상 시스템의 설계 및 개발)

  • Tack, Gye-Rae;Lee, Sang-Bum;Lee, Sung-Jae
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.503-508
    • /
    • 2003
  • Since surgical treatment of the spine should overcome neurological compromises, the operative procedures need to be carefully planned and carried out with high degree of precision. Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate relief of pain. However, failures of treatment due to excessive PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that the control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. Therefore, clinical success of vertebroplasty can be dependent on the volume of PMMA injection for a given patient. In this study, the optimal volume of PMMA injection for vertebroplasty was predicted based on the image analysis of a given patient.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

Evaluation of Surface Macrostructure and Mechanical Properties of Porous Surface Ti-HA Biomaterial Fabricated by a Leaching Process (Leaching 공정으로 제조한 표면 다 기공 Ti-HA 생체재료의 표면 조직 및 기계적 성질의 평가)

  • Woo, Kee Do;Kang, Duck Soo;Moon, Min Seok;Kim, Sang Hyuk;Liu, Zhiguang;Omran, Abdel-Nasser
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • Ti-6Al-4V ELI alloy, which is commonly used as a biomaterial, is associated with a high elastic modulus and poor biocompatibility. This alloy presents a variety of problems on several areas. Therefore, the development of good non-toxic biocompatible biomaterials with a low elastic modulus is necessary. Particularly, hydroxyapatite (HA) is an attractive material for human tissue implantation. This material is widely used as artificial bone due to its good biocompatibility and similar composition to human bone. Many scientists have studied the fabrication of HA as a biomaterial. However, applications of bulk HA compact are hindered by the low strength of HA when it is sintered. Therefore, HA has been coated on Ti or Ti alloy to facilitate good bonding between tissue and the HA surface. However, there are many problems when doing this, such as the low bonding strength between HA and Ti due to the different thermal expansion coefficients and mechanical properties. In this study, a Ti-HA composite with a porous surface was successfully fabricated by pulse current activated sintering (PCAS) and a subsequent leaching process.

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.