• Title/Summary/Keyword: Bone morphogenetic protein 6

Search Result 69, Processing Time 0.026 seconds

Anti-wrinkle effect of bone morphogenetic protein receptor 1a-extracellular domain (BMPR1a-ECD)

  • Yoon, Byung-Hak;Jeon, Yun-Hui;Hwang, Byunghee;Kwon, Hyuknam;Choe, Senyon;Yang, Zungyoon
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.465-470
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) have diverse and important roles in the proliferation and differentiation of adult stem cells in our tissues. Especially, BMPs are well known to be the main inducers of bone formation, by facilitating both proliferation and differentiation of bone stem cells. Interestingly, in skin stem cells, BMPs repress their proliferation but are indispensable for the proper differentiation into several lineages of skin cells. Here, we tested whether BMP antagonists have an effect on the prevention of wrinkle formation. For this study we used an in vivo wrinkle-induced mouse model. As a positive control, retinoic acid, one of the top anti-wrinkle effectors, showed a 44% improvement compared to the non-treated control. Surprisingly, bone morphogenetic protein receptor 1a extracellular domain (BMPR1a-ECD) exhibited an anti-wrinkle effect which was 6-fold greater than that of retinoic acid. Our results indicate that BMP antagonists will be good targets for skin or hair diseases.

Ulnar Radial Nonunion Fracture Treated with Recombinant Human Bone Morphogenetic Protein-2 in a Dog (개의 요.척골유합부전의 Recombinant Human Bone Morphogenetic Protein-2 적용 치료례)

  • 홍성혁
    • Journal of Veterinary Clinics
    • /
    • v.18 no.2
    • /
    • pp.156-159
    • /
    • 2001
  • A 6-year-old male mongrel dog with a 7-month history of ulnar-radial nonunion fracture was treated with implantation of recombinant human bone morphogenetic protein-2 (rhBMP-2). The dog had received surgical correction three times prior to the admission but radiography of the affected limb revealed a typical figure of nonunion fracture. Glossly, the fractured ends were sclerotic and the area between the ends was filled with fibrous tissue. After debridement the shaft was fixed by an 10-hole plate. rhBMP-2 at a total dose of 256 micrograms was implanted with a synthetic carrier into the 10-mm defect formed by the debridement. Callus formation responding to rhBMP-2 was radiographically observed at 4 weeks after implantation and the defect bridged both fracture ends by 8 weeks after implantation. The plate was removed at 12 months after implantation. Any complications were not observed for 5 months after removal of the plate.

  • PDF

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.6
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.

Vertical bone augmentation using collagenated or non-collagenated bone substitute materials with or without recombinant human bone morphogenetic protein-2 in a rabbit calvarial model

  • Hyun-Chang Lim;Kyeong-Won Paeng;Ui-Won Jung;Goran I. Benic
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.429-443
    • /
    • 2023
  • Purpose: The aim of this study was to determine 1) the bone-regenerative effect of porcine bone block materials with or without collagen matrix incorporation, 2) the effect of a collagen barrier, and 3) the effect of adding recombinant human bone morphogenetic protein-2 (rhBMP-2) to the experimental groups. Methods: Four treatment modalities were applied to rabbit calvaria: 1) deproteinized bovine bone mineral blocks (DBBM), 2) porcine bone blocks with collagen matrix incorporation (PBC), 3) porcine bone blocks alone without collagen matrix incorporation (PB), and 4) PBC blocks covered by a collagen membrane (PBC+M). The experiments were repeated with the addition of rhBMP-2. The animals were sacrificed after either 2 or 12 weeks of healing. Micro-computed tomography (micro-CT), histologic, and histomorphometric analyses were performed. Results: Micro-CT indicated adequate volume stability in all block materials. Histologically, the addition of rhBMP-2 increased the amount of newly formed bone (NB) in all the blocks. At 2 weeks, minimal differences were noted among the NB of groups with or without rhBMP-2. At 12 weeks, the PBC+M group with rhBMP-2 presented the greatest NB (P<0.05 vs. the DBBM group with rhBMP-2), and the PBC and PB groups had greater NB than the DBBM group (P>0.05 without rhBMP-2, P<0.05 with rhBMP-2). Conclusions: The addition of rhBMP-2 enhanced NB formation in vertical augmentation using bone blocks, and a collagen barrier may augment the effect of rhBMP-2.

Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts

  • Kwon, Taek-Kyun;Song, Jae-Min;Kim, In-Ryoung;Park, Bong-Soo;Kim, Chul-Hoon;Cheong, In-Kyo;Shin, Sang-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • Objectives: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphophonate therapy that has been reported in recent years. Osteoclastic inactivity by bisphosphonate is the known cause of BRONJ. Bone morphogenetic protein-2 (BMP-2) plays an important role in the development of bone. Recombinant human BMP-2 (rhBMP-2) is potentially useful as an activation factor for bone repair. We hypothesized that rhBMP-2 would enhance the osteoclast-osteoblast interaction related to bone remodeling. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were treated with $100{\mu}M$ alendronate, and 100 ng/mL rhBMP-2 was added. Cells were incubated for a further 48 hours, and cell viability was measured using an MTT assay. Expression of the three cytokines from osteoblasts, receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF), were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: Cell viability was decreased to $82.75%{\pm}1.00%$ by alendronate and then increased to $110.43%{\pm}1.35%$ after treatment with rhBMP-2 (P<0.05, respectively). OPG, RANKL, and M-CSF expression were all decreased by alendronate treatment. RANKL and M-CSF expression were increased, but OPG was not significantly affected by rhBMP-2. Conclusion: rhBMP2 does not affect OPG gene expression in hFOB, but it may increase RANKL and M-CSF gene expression.

Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts

  • Jeong, Seok-Young;Hong, Ji-Un;Song, Jae Min;Kim, In Ryoung;Park, Bong Soo;Kim, Chul Hoon;Shin, Sang Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • Objectives: The purpose of this study was to evaluate the synergic effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser therapy (LLLT) on bisphosphonate-treated osteoblasts. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were cultured with $100{\mu}M$ alendronate. Low-level Ga-Al-As laser alone or with 100 ng/mL rhBMP-2 was then applied. Cell viability was measured with MTT assay. The expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) were analyzed for osteoblastic activity inducing osteoclastic activity. Collagen type and transforming growth factor beta-1 were also evaluated for bone matrix formation. Results: The results showed that rhBMP-2 and LLLT had a synergic effect on alendronate-treated osteoblasts for enhancing osteoblastic activity and bone matrix formation. Between rhBMP-2 and LLLT, rhBMP-2 exhibited a greater effect, but did not show a significant difference. Conclusion: rhBMP-2 and LLLT have synergic effects on bisphosphonate-treated osteoblasts through enhancement of osteoblastic activity and bone formation activity.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.2
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

Sinus augmentation using rhBMP-2-loaded synthetic bone substitute with simultaneous implant placement in rabbits

  • Joo, Myung-Jae;Cha, Jae-Kook;Lim, Hyun-Chang;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded synthetic bone substitute on implants that were simultaneously placed with sinus augmentation in rabbits. Methods: In this study, a circular access window was prepared in the maxillary sinus of rabbits (n=5) for a bone graft around an implant (${\varnothing}3{\times}6mm$) that was simultaneously placed anterior to the window. Synthetic bone substitute loaded with rhBMP-2 was placed on one side of the sinus to form the experimental group, and saline-soaked synthetic bone substitute was placed on the other side of the sinus to form the control group. After 4 weeks, sections were obtained for analysis by micro-computed tomography and histology. Results: Volumetric analysis showed that the median amount of newly formed bone was significantly greater in the BMP group than in the control group ($51.6mm^3$ and $46.6mm^3$, respectively; P=0.019). In the histometric analysis, the osseointegration height was also significantly greater in the BMP group at the medial surface of the implant (5.2 mm and 4.3 mm, respectively; P=0.037). Conclusions: In conclusion, an implant simultaneously placed with sinus augmentation using rhBMP-2-loaded synthetic bone substitute can be successfully osseointegrated, even when only a limited bone height is available during the early stage of healing.

Optimization of Extracellular Production of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) with Bacillus subtilis

  • Kim, Chun-Kwang;Rhee, Jong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • Extracellular production of recombinant human bone morphogenetic protein-7 (rhBMP-7) was carried out through the fermentation of Bacillus subtilis. Three significant fermentation conditions and medium components were selected and optimized to enhance the rhBMP-7 production by using the response surface methodology (RSM). The optimum values of the three variables for the maximum extracellular production of rhBMP-7 were found to be 2.93 g/l starch, 5.18 g/l lactose, and a fermentation time of 34.57 h. The statistical optimization model was validated with a few fermentations of B. subtilis in shake flasks under optimized and unoptimized conditions. A 3-L jar fermenter using the shake-flask optimized conditions resulted in a higher production (413 pg/ml of culture medium) of rhBMP-7 than in a shake flask (289.1 pg/ml), which could be attributed to the pH being controlled at 6.0 and constant agitation of 400 rpm with aeration of 1 vvm.