• Title/Summary/Keyword: Bone markers

Search Result 298, Processing Time 0.027 seconds

Identification and Characterization of Single Nucleotide Polymorphisms of SLC22A11 (hOAT4) in Korean Women Osteoporosis Patients

  • Lee, Woon Kyu;Kwak, Jin Oh;Hwang, Ji-Sun;Suh, Chang Kook;Cha, Seok Ho
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.265-271
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most common form of human genetic variation. Non-synonymous SNPs (nsSNPs) change an amino acid. Organic anion transporters (OATs) play an important role in eliminating or reabsorbing endogenous and exogenous organic anionic compounds. Among OATs, hOAT4 mediates high affinity transport of estrone sulfate and dehydroepiandrosterone sulfate. The rapid bone loss that occurs in post-menopausal women is mainly due to a net decrease of estrogen. In the present study we searched for SNPs within the exon regions of hOAT4 in Korean women osteoporosis patients. Fifty healthy subjects and 50 subjects with osteoporosis were screened for genetic polymorphism in the coding region of SLC22A11 (hOAT4) using GC-clamp PCR and denaturing gradient gel electrophoresis (DGGE). We found three SNPs in the hOAT4 gene. Two were in the osteoporosis group (C483A and G832A) and one in the normal group (C847T). One of the SNPs, G832A, is an nsSNP that changes the $278^{th}$ amino acid from glutamic acid to lysine (E278K). Uptake of [$3^H$] estrone sulfate by oocytes injected with the hOAT4 E278K mutant was reduced compared with wild-type hOAT4. Km values for wild type and E278K were $0.7{\mu}M$ and $1.2{\mu}M$, and Vmax values were 1.8 and 0.47 pmol/oocyte/h, respectively. The present study demonstrates that hOAT4 variants can causing inter-individual variation in anionic drug uptake and, therefore, could be used as markers for certain diseases including osteoporosis.

Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases

  • Rashed, Reham A;Kadry, Dalia Y;Taweel, Maha EL;Abd El Wahab, Nahed;Abd El Hameed, Thoreya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7875-7882
    • /
    • 2015
  • Background: The objectives of this study were to evaluate the expression of brain and acute leukemia, cytoplasmic (BAALC) gene and erythroblast transformation-specific related gene (ERG) in de novo cases of acute myeloid leukemia (AML) and identify roles in disease progression and outcome. Materials and Methods: This study included 50 newly diagnosed AML patients, along with 10 apparently healthy normal controls. BAALC and ERG expression was detected in the bone marrow of both patients and controls using real-time RT-PCR. Results: BAALC and ERG expression was detected in 52% of cases but not in any controls. There was a statistically significant correlation between BAALC and ERG gene expression and age (p-value=0.004 and 0.019, respectively). No statistical significance was noted for sex, lymphadenopathy, hepatomegaly, splenomegaly, other hematological findings, immunophenotyping and FAB sub-classification except for ERG gene and FAB (p-value=0.058). A statistical significant correlation was found between response to treatment with ERG expression (p-value=0.028) and age (p-value=0.014). A statistically significant variation in overall survival was evident with patient age, BM blast cells, FAB subgroups, BAALC and ERG expression (p-value=<0.001, 0.045, 0.041, <0.008 and 0.025 respectively). Conclusions: Our results suggest that BAALC and ERG genes are specific significant molecular markers in AML disease progression, response to treatment and survival.

Association of Four ERCC1 and ERCC2 SNPs with Survival of Bone Tumour Patients

  • Hao, Ting;Feng, Wei;Zhang, Jie;Sun, Yong-Jian;Wang, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3821-3824
    • /
    • 2012
  • Aim: SNPs of ERCC1 and ERCC2 genes have been found to be associated with response to platinum therapy in different clinical settings. In the current study, we investigated the relationship of SNPs in ERCC1 and ERCC2 to cisplain response and survival in osteosarcoma patients. Methods: 267 consecutive patients diagnosed with osteosarcoma between January 2003 to January 2005 were followed up until the end of January 2010. ERCC1 Asn118Asn, ERCC1 Gln504Lys, ERCC2 Asp312Asn and ERCC2 Lys751Gln polymorphisms were detected based upon the Sequenom MassARRAY platform.Results: For ERCC1 Asn118Asn, the variant genotype T/T was strongly significantly associated with a higher event free survival when compared with the wild-type C/C, with an adjusted OR (95% CI) of 0.39 (0.14-0.95). ERCC2 751 A/A genotype showed increased event free survival of osteosarcoma (HR=0.44; 95%CI=0.10-0.87). However, we did not find significant association of ERCC1 Gln504Lys and ERCC2 Asp312Asn polymorphisms with prognosis of osteosarcoma. Conclusions: We first report associations of four SNPs, ERCC1 Asn118Asn, ERCC1 Gln504Lys, ERCC2 Asp312Asn and ERCC2 Lys751Gln, with risk of death from osteosarcoma in a Chinese population, indicating ERCC1 118T/T and ERCC2 A/A may be used as surrogate markers for clinical outcome of osteosarcoma treatmetn with cisplain.

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Bacterial strains isolated from Jeotgal (salted seafood) induce maturation and cytokine production in mouse bone marrow-derived dendritic cells (마우스 골수 유래 수지상세포의 성숙과 사이토카인 생산에 대한 젓갈 분리균의 효과 연구)

  • Moon, Sun-Young;Park, Eun-Jin;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.3
    • /
    • pp.139-146
    • /
    • 2014
  • Jeotgal (salted seafood) has been one of major fermented foods in Korea for long time. Although there are many studies about Jeotgal in various aspects of food, its immunological importance on hosts has not been elucidated yet. In this study, we investigated if several bacteria isolated from Jeotgal may modulate the function of dendritic cells (DCs), powerful antigen-presenting cells equipped with special immunological capabilities. 4 Jeotgal bacteria were selected as representatives and used for experiments. To treat viable DCs, those bacteria were killed at $60^{\circ}C$ for 30 min. The viability of DCs treated with Jeotgal bacteria was verified and two isolates significantly induced high production of interleukin-12, a representative cell-mediated cytokine of DCs. Surface activation and maturation markers (MHC class II, CD40, CD86) of DCs were analyzed by flow cytometer. In addition, the treated DCs showed significantly high lymphocyte stimulatory capability compared to control DCs based on allogeneic mixed lymphocyte reactions. These observations suggest that Jeotgal isolates can function as immunostimulating bacteria in hosts, like Lactobacillus. Taken together, these experimental evidences may broaden the use of Jeotgal isolates in immunological fields in addition to as a fermented food.

Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy

  • Lee, Bo-Ah;Kim, Hae-Jin;Xuan, Yun-Ze;Park, Yeong-Joon;Chung, Hyun-Ju;Kim, Young-Joon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.512-520
    • /
    • 2014
  • PURPOSE. The purpose of this study was to assess the surface characteristics and the biocompatibility of zirconium (Zr) coating on Ti-6Al-4V alloy surface by radio frequency (RF) magnetron sputtering method. MATERIALS AND METHODS. The zirconium films were developed on Ti-6Al-4V discs using RF magnetron sputtering method. Surface profile, surface composition, surface roughness and surface energy were evaluated. Electrochemical test was performed to evaluate the corrosion behavior. Cell proliferation, alkaline phosphatase (ALP) activity and gene expression of mineralized matrix markers were measured. RESULTS. SEM and EDS analysis showed that zirconium deposition was performed successfully on Ti-6Al-4V alloy substrate. Ti-6Al-4V group and Zr-coating group showed no significant difference in surface roughness (P>.05). Surface energy was significantly higher in Zr-coating group than in Ti-6Al-4V group (P<.05). No difference in cell morphology was observed between Ti-6Al-4V group and Zr-coating group. Cell proliferation was higher in Zr-coating group than Ti-6Al-4V group at 1, 3 and 5 days (P<.05). Zr-coating group showed higher ALP activity level than Ti-6Al-4V group (P<.05). The mRNA expressions of bone sialoprotein (BSP) and osteocalcin (OCN) on Zr-coating group increased approximately 1.2-fold and 2.1-fold respectively, compared to that of Ti-6Al-4V group. CONCLUSION. These results suggest that zirconium coating on Ti-6Al-4V alloy could enhance the early osteoblast responses. This property could make non-toxic metal coatings on Ti-6Al-4V alloy suitable for orthopedic and dental implants.

The influence of type 2 diabetes mellitus on the expression of inflammatory mediators and tissue inhibitor of metalloproteinases-2 in human chronic periodontitis

  • Kim, Jae-Bung;Jung, Mi-Hwa;Cho, Je-Yeol;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.109-116
    • /
    • 2011
  • Purpose: The purpose of this study was to compare and quantify the expression of C-reactive protein (CRP), matrix metalloproteinase (MMP)-14, and tissue inhibitor of metalioproteinases (TIMP)-2 in gingival tissues of patients with chronic periodontitis accompanied with inflammatory reaction related to alveolar bone resorption with or without type 2 diabetes mellitus (DM). Methods: Twelve patients with type 2 DM and chronic periodontitis (group 3), twelve patients with chronic periodontitis (group 2), and twelve healthy individuals (group 1) were included in the study. Gingival tissue biopsies were collected from each patient and from healthy individuals at the time of periodontal surgery (including surgical crown lengthening) or tooth extraction. The concentrations of cytokines were determined by a western blot analysis. Results: The expression levels of CRP and MMP-14 increased in group 2 and 3, and they were highest in group 3. The expressions of TIMP-2 also increased in group 2 and 3. Conclusions: This study demonstrated that the expression levels of CRP, MMP-14, and TIMP-2 might be inflammatory markers in periodontal inflamed tissue. It can be assumed that CRP, MMP-14, and TIMP-2 may be partly involved in the progression of periodontal inflammation associated to type 2 DM.

CHANGES IN BODY AND ORGAN WEIGHTS, HEMATOLOGICAL PARAMETERS, AND FREQUENCY OF MICRONUCLEI IN THE PERIPHERAL BLOOD ERYTHROCYTES OF ICR MICE EXPOSED TO LOW-DOSE-RATE $\gamma$-RADIATION

  • Kang, Yu-Mi;Shin, Suk-Chul;Jin, Young-Woo;Kim, Hee-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.102-106
    • /
    • 2009
  • We exposed ICR mice to low-dose (0.2 Gy) and low-dose-rate (0.7 mGy/h) $\gamma$-radiation ($^{137}Cs$) in the Low-dose-rate Irradiation Facility at the Radiation Health Research Institute to evaluate systemic effects of low-dose radiation. We compared the body and organ weights, number of blood cells (white and red blood cells and platelets), levels of biochemical markers in serum, and frequency of micronuclei in polychromatic erythrocytes between low-dose irradiated and non-irradiated control mice. The ICR mice irradiated with total doses of 0.2 and 2 Gy showed no changes in body and organ weights, number of blood cells (white and red blood cells), or frequency of micronuclei in the polychromatic erythrocytes of peripheral blood. However, the number of platelets (P = 0.002) and the liver weight (P < 0.01) were significantly increased in mice exposed to 0.2 and 2 Gy, respectively. These results suggest that a low-dose-rate of 0.7 mGy/h does not induce systemic damage. This dose promotes hematopoiesis in the bone marrow microenvironment and the proliferation of liver cells. In the future, the molecular biological effects of lower doses and dose rates need to be evaluated.

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells

  • Moon, Yeon-Hee;Son, Jung-Wan;Moon, Jung-Sun;Kang, Jee-Hae;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.