• Title/Summary/Keyword: Bone markers

Search Result 301, Processing Time 0.027 seconds

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

The increasing hematopoietic effect of the combined treatment of Korean Red Ginseng and Colla corii asini on cyclophosphamide-induced immunosuppression in mice

  • Lee, Yuan Yee;Irfan, Muhammad;Quah, Yixian;Saba, Evelyn;Kim, Sung-Dae;Park, Seung-Chun;Jeong, Myung-Gyun;Kwak, Yi-Seong;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.591-598
    • /
    • 2021
  • Background: Hematopoiesis is the production of blood cells from hematopoietic stem cells (HSCs) that reside in the bone marrow. Cyclophosphamide (CTX) is a chemotherapy drug that suppresses the immune system. Korean Red Ginseng (KRG) and Colla corii asini (CCA) have been traditionally used for boosting the immune system. Methods: HSCs in the bone marrow, and immune cell subtype in splenocytes, PBMCs, and thymocytes were investigated. Serum levels of hematopoietic-related markers were analyzed using ELISA. Protein expression in spleen tissue was analyzed using western blot analysis. Hematoxylin & eosin staining in the femurs of mice were also conducted. Results: The combination of KRG and CCA with a ratio of 3:2 increased HSCs, CD3 and CD8+ T cells in the circulation, and CD3 T cells in the spleen. A ratio of 2:3 (KRG:CCA) increased the thymic regulatory T cells and recovered the CD3 T cells in the spleen and circulation while recovering proteins in the JAK-STAT pathway in the spleen. Overall, blood cell population and differentiating factors vital for cell differentiation were also significantly recovered by all combinations especially in ratios of 3:2 and 2:3. Conclusion: A ratio of 3:2 (KRG:CCA) is the most ideal combination as it recovered the HSC population in the bone marrow of mice.

Which Index for Muscle Mass Represents an Aging Process?

  • Kim, Hyung-Kook;Lee, You Jin;Lee, Young-Kyun;Kim, Hongji;Koo, Kyung-Hoi
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.219-226
    • /
    • 2018
  • Background: Although studies and interest in sarcopenia have increased, it is still a matter of debate which muscle mass index better represents the aging process. We compared 3 indices for muscle mass (appendicular skeletal muscle mass [ASM]/weight, $ASM/height^2$, and the body mass index [BMI]-adjusted muscle mass index [ASM/BMI]) to determine which better reflected the aging process in terms of the decline in bone mineral density (BMD), visual acuity (VA), hearing power, renal function, pulmonary function, and handgrip strength. Methods: We performed a retrospective cross-sectional study using the Korea National Health and Nutrition Examination Survey in the Korean population. Between 2008 and 2011, a total of 14,415 men and 17,971 women aged 10 years or older participated in the study. We plotted the changes in the 3 indices of muscle mass and compared these with changes in BMD, VA, hearing power, renal function, pulmonary function, and handgrip strength according to each age group. Results: The ASM/BMI showed similar changes in terms of surrogate markers of the aging process, while the ASM/weight and $ASM/height^2$ showed no correlation. Conclusions: Among muscle indices for sarcopenia, only the ASM/BMI represented the aging process.

Analysis of skin movement using MR images (자기공명 영상을 이용한 피부 움직임 분석에 관한 연구)

  • ;Natsuki Miyata;Makiko Kouchi;Masaaki Mochimaru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.719-722
    • /
    • 2003
  • This paper describes a novel experiment that measures the skin movement of a hand based on MR (magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images. and (3) registration of the 3D models. The results of registration are used to trace the skin movement with respect to underlying bone motions by measuring the positions of the surface markers.

  • PDF

Correlation between Microvascular Density and Matrix Metalloproteinase 11 Expression in Prostate Cancer Tissues: a Preliminary Study in Thailand

  • Kanharat, Nongnuch;Tuamsuk, Panya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6639-6643
    • /
    • 2015
  • Background: Prostate cancer is a major concern of public health. Microvascular density (MVD) is one of the prognostic markers for various solid cancers. Matrix metalloproteinase 11 (MMP11) plays an important role in angiogenesis and changes in its expression level are known to be associated with tumor progression and clinical outcome. Aim: To investigate the relationship between MVD and MMP11 expression in prostatic adenocarcinoma tissues. Materials and Methods: The expression levels of MMP11 and MVD were analyzed immunohistochemically for 50 specimens of prostatic adenocarcinoma. Results: MMP11 was mainly expressed in stromal cells but rarely seen in epithelial cells. Mean MVD was $36/mm^2$, and it was correlated significantly only with bone metastases. MVD was also significantly correlated with MMP11 expression (r=0.29, p=0.044). Conclusions: MMP11 may alter the stromal microenvironment of prostate cancer to stimulate tumor angiogenesis.

THE EFFECT OF PDGF-BB AND IGF-I COMBINATION ON THE HEALING OF ARTIFICIAL PERIAPICAL LESIONS IN BEAGLE DOGS (PDGF-BB와 IGF-I 혼합 투여가 비글견 인공 치근단 병소의 치유에 미치는 영향에 관한 연구)

  • Kim, Mi-Ri;Kim, Min-Kyum;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • It is difficult to treat the endodontic apical perforation successfully. In this study, we hypothesized that the application of PDGF-BB and IGF-I into periapical perforation site may accelerate periapical healing and lead to bone deposition. And the specificity of osteonectin in periapical healing was investigated. The experiments were performed on the upper and lower 51 premolar teeth of 4 beagle dogs. The pulp chamber of each tooth was opened and the dental plaque was inserted into the canal for developing the periapical lesion for 5 weeks. Then, the roots were artificially perforated at the apex with the number 4 profile of .06 taper. In each step, standard periapical radiographs were taken to compare the size of lesion each other. The radiographs were scanned and analyzed by image analysis system. The mean and standard deviation of periradicular radiolucency ratios were calculated in each group. ANOVA was used for comparison. 51 premolars were grouped into 3 groups; control group, calcium hydroxide-treated group and calcium hydroxide plus growth factors-treated group. In the control group, the apical perforations were not sealed and obturated with gutta-percha and ZOE sealer by lateral condensation technique. In the experimental groups, the apical perforation were sealed with calcium hydroxide and with/without $4{\mu}g$ of PDGF-BB & IGF-I in cellulose gel and obturated by lateral condensation technique. Fluorescent bone markers were used to measure new bone formation. Following 2, 4, 12 weeks after experiment the dogs were sacrificed and histologic sections were prepared. Each tooth block including periapical lesion was sectioned mesiodistally. One half of the sections were decalcified with 6% nitric acid and processed by standard paraffin embedding technique. The sections were stained by hematoxylin and eosin, and immunostained for osteonectin. Histomorphometrical measurement of neoformed bone was performed using a light microscope. And the other half of the sections were prepared by undecalcified preparation, and confocal laser scanning microscopic investigations were done.

  • PDF

Association Between Pelvic Bone Computed Tomography-Derived Body Composition and Patient Outcomes in Older Adults With Proximal Femur Fracture

  • Tae Ran Ahn;Young Cheol Yoon;Hyun Su Kim;Kyunga Kim;Ji Hyun Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.434-443
    • /
    • 2023
  • Objective: To investigate the association between pelvic bone computed tomography (CT)-derived body composition and patient outcomes in older adult patients who underwent surgery for proximal femur fractures. Materials and Methods: We retrospectively identified consecutive patients aged ≥ 65 years who underwent pelvic bone CT and subsequent surgery for proximal femur fractures between July 2018 and September 2021. Eight CT metrics were calculated from the cross-sectional area and attenuation of the subcutaneous fat and muscle, including the thigh subcutaneous fat (TSF) index, TSF attenuation, thigh muscle (TM) index, TM attenuation, gluteus maximus (GM) index, GM attenuation, gluteus medius and minimus (Gmm) index, and Gmm attenuation. The patients were dichotomized using the median value of each metric. Multivariable Cox regression and logistic regression models were used to determine the association between CT metrics with overall survival (OS) and postsurgical intensive care unit (ICU) admission, respectively. Results: A total of 372 patients (median age, 80.5 years; interquartile range, 76.0-85.0 years; 285 females) were included. TSF attenuation above the median (adjusted hazard ratio [HR], 2.39; 95% confidence interval [CI], 1.41-4.05), GM index below the median (adjusted HR, 2.63; 95% CI, 1.33-5.26), and Gmm index below the median (adjusted HR, 2.33; 95% CI, 1.12-4.55) were independently associated with shorter OS. TSF index (adjusted odds ratio [OR], 6.67; 95% CI, 3.13-14.29), GM index (adjusted OR, 3.45; 95% CI, 1.49-7.69), GM attenuation (adjusted OR, 2.33; 95% CI, 1.02-5.56), Gmm index (adjusted OR, 2.70; 95% CI, 1.22-5.88), and Gmm attenuation (adjusted OR, 2.22; 95% CI, 1.01-5.00) below the median were independently associated with ICU admission. Conclusion: In older adult patients who underwent surgery for proximal femur fracture, low muscle indices of the GM and gluteus medius/minimus obtained from their cross-sectional areas on preoperative pelvic bone CT were significant prognostic markers for predicting high mortality and postsurgical ICU admission.