• 제목/요약/키워드: Bone implant

검색결과 2,314건 처리시간 0.027초

상악전치부 결손부에서 골유도재생술식을 동반한 임플란트 수복의 증례보고 (Ridge augmentation and implant placement on maxillary anterior area with deficient alveolar ridge : case report)

  • 홍은진;고미선;정양훈;윤정호
    • 대한치과의사협회지
    • /
    • 제57권3호
    • /
    • pp.149-160
    • /
    • 2019
  • Atrophic alveolar ridge of maxillary anterior area is commonly observed after the extraction of teeth in patients with severely compromised periodontal disease, causing difficulties with implant placement. Successful esthetics and functional implant rehabilitation rely on sufficient bone volume, adequate bone contours, and ideal implant positioning and angulation. The present case report categorized the ridge augmentation techniques using guided bone regeneration (GBR) on the maxillary anterior site by Seibert classification. Case I patient presented for implant placement in the position of tooth #11. The alveolar ridge was considered a Seibert classification I ridge defect. Simultaneous implant placement and GBR were performed. Eight months after implantation, clinical and radiological examinations were performed. Case III patient presented with discomfort due to mobility of the upper maxillary anterior site. Due to severe destruction of alveolar bone, teeth #11 and #12 were extracted. After three months, the alveolar ridge was considered a Seibert classification III ridge defect. A GBR procedure was performed; implantation was performed 6 months later. Approximately 1-year after implantation, clinical and radiological examinations were performed. During the whole treatment period, healing was uneventful without membrane exposure, severe swelling, or infection in all cases. Radiographic and clinical examinations revealed that atrophic hard tissues and buccal bone contour were restored to the acceptable levels for implant placement and esthetic restoration. In conclusion, severely resorbed alveolar ridge of the maxillary anterior area can be reconstructed with ridge augmentation using the GBR procedure so that dental implants could be successfully placed.

  • PDF

The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

  • Kang, Se-Ryong;Bok, Sung-Chul;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Tae-Il;Yi, Won-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제46권2호
    • /
    • pp.116-127
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods: We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results: SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions: There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses.

선반가공 임플란트와 골조직의 유착에 관한 전자현미경적 연구 (Electron Microscopic Study of Osseointegration between Bone and Smooth Machined Implants)

  • 장병수
    • Applied Microscopy
    • /
    • 제34권4호
    • /
    • pp.277-283
    • /
    • 2004
  • 본 연구는 토끼의 경골에 선반가공 임플란트를 식립한 후 1, 4, 8, 12주가 경과한 다음 적출하여 골조직이 임플란트에 접촉되는 과정의 미세구조적 특성을 연구하였다. 임플란트 매식 후 임플란트에 대한 골조직의 유착을 방해하는 섬유성 결합조직의 형성은 일어나지 않았다. 4주가 경과된 조직표본의 골과 임플란트가 직접 접촉하는 부위에서 골모세포가 활성화되어 골조직과 임플란트의 직접적인 유착이 일어나기 시작하였다. 임플란트와 접하는 부위의 조직에는 가골이 형성되었고 이어서 교원섬유와 무기질이 침착되면서 광화가 진행되었다. 8주 경과된 조직에서 활성화된 골모세포는 임플란트의 접촉면에 골기질을 합성하여 골과 임플란트의 유착이 진행되었다. 이 시기에 골모세포는 골기질에 둘러싸였고, 골기질은 여러 방향으로 종주하는 교원섬유를 가지고 있었다. 12주가 경과된 조직표본에서 새롭게 형성되어 광화된 골조직과 임플란트는 두께가 약 $1{\sim}1.5{\mu}m$인 무정형의 전자밀도가 높은 물질층에 의해서 분리되어 있었다.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Evaluation of Crestal Bone Resorption of the TiUnite(R) Anodized Implant System

  • Kim, Young-Kyun;Ahn, Min-Seok;Lee, Yang-Jin;Yun, Pil-Young
    • Journal of Korean Dental Science
    • /
    • 제1권1호
    • /
    • pp.4-9
    • /
    • 2008
  • Purpose : This study sought to examine the aspects of crestal bone resorption and to evaluate the clinical outcomes of the TiUnite$^{(R)}$ (Nobel Biocare, Sweden) anodized implant system. Materials and Methods : Among the 67 patients (211 fixtures) who were treated using TiUnite(r) implants at Seoul National University Bundang Hospital between March 2004 and January 2007, 26 (91 fixtures) were considered in this study. Initial and secondary stabilities were measured using Periotest$^{(R)}$ and Ostell(tm) Mentor. The radiographic evaluation of crestal bone resorption was carried out by measuring the change in crestal bone level at the time of surgery compared to that 1 year after loading. Panoramic radiograph and periapical radiograph were used. Based on the radiographic findings, the shapes of crestal bone resorption were classified. Results : The average amount of crestal bone resorption after 1 year of functional implant loading was 0.30 mm. There was no saucerization in 40 implant fixtures (43.9%), although more than 1 thread were exposed in 51 implant fixtures (56.6%). The success rate of the implants was 94.5%, and the survival rate was 100%. Conclusions : Good clinical outcomes and minor crestal bone resorption were noted in this study. Saucerization for the establishment of biological width was not a general finding in the TiUnite$^{(R)}$ anodized implant system.

  • PDF

즉시형과 지연형 치아 임플란트에서 Tc-99m-MDP의 Bone Uptake 평가 (Evaluation of Bone Uptake on Tc-99m-MDP in Immediate and Delayed Dental Implants)

  • 김중현;김명환;이원국;이재영;강성수;최석화
    • 한국임상수의학회지
    • /
    • 제20권2호
    • /
    • pp.207-211
    • /
    • 2003
  • This investigation aimed to determine the relative merit of osseointegration in immediate and delayed implantation in the dog mandible using radiography and bone scintigraphy. five adult mongrel dogs with a mean weight of 8.5 kg were used in this investigation. During the entire study period. all dogs were fed with a soft commercial diet and water ad libitum to minimize functional loading of the implant. Twenty titanium alloy systems 4 mm in diameter and 10 mm in length blasted with calcium phosphate were prepared for insertion. The second and third left mandibular premolars in each dog were extracted for the delayed implant insertion. Twelve weeks later, the second and third right mandibular premolars were extracted for the immediate implant insertion. Before the delayed and immediate implantation procedures and 0, 4, 8, and 12 weeks after the insertions, radiography and bone scintigraphy were conducted. Bone scans were obtained using a large field of view gamma camera equipped with a collimator about 3 hours after intravenous injection of Tc-99m-MDP to the dogs. All the dogs were evaluated weekly for inflammation, necrosis, and other of the bone or sort tissue. Significant macroscopic lesions were not detected. Radioisotope scintigraphy with Tc-99m-MDP hat proved to be a reliable method for measuring increased bone activity at specific skeleton tissue sites. In conclusion, osseointegration in peri-implant bone did not differ significantly between the immediate and delayed implant procedures during the experimental period. The immediate implant may be an alternative treatment of implant insertion in animals.

하중 위치에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분석 (Finite element analysis of stress distribution on supporting bone of cement retained implant by loading location)

  • 김갑진
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.143-149
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate the effect of two different oblique mechanical loading to occlusal surfaces of cement retained implant on the stress distributions in surrounding bone, using 3-dimensional finite element method. Methods: A 3-dimensional finite element model of a cement retained implant composed of three unit implants, simplified ceramic crown and supporting bone was developed according to the design of ement retained implant for this study. two kinds of surface distributed oblique loads(100 N) are applied to following occlusal surfaces in the single crowns; 1) oblique load on 2 occlusal points(50N for each buccal cusp, 2 buccal cusps exist), 2) oblique load on 4 occlusal points(25N for each buccal and lingual cusp, 2 buccal and 2 lingual cusps exist) Results: The results of the comparison of the stress distributions on surrounding bone are as follows. In the condition of oblique load on 2 occlusal points, VMS was 741.3 Mpa in the M1(Ø$4.0{\times}13mm$) model and 251.2 Mpa in the M2(Ø$5.0{\times}13mm$) model. It means the stress on the supporting bone is decreased. The results of oblique load on 4 occlusal points are similar to this one. Conclusion: Increasing the diameter of the implant fixture is helpful to distribute the stress on the supporting bone. Also, to obtain the structural stability of the supporting bone, it is effective to distribute the load evenly on the occlusal surface of crown in producing single crown implant.

The factors that influence postoperative stability of the dental implants in posterior edentulous maxilla

  • Kim, Yun-Ho;Choi, Na-Rae;Kim, Yong-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.2.1-2.6
    • /
    • 2017
  • Background: All clinicians are aware of the difficulty of installing a dental implant in posterior maxilla because of proximate position of maxillary sinus, insufficient bone width, and lower bone density. This study is to examine which factors will make the implantation in the posterior maxilla more difficult, and which factors will affect the postoperative implant stability in this region. Methods: Five hundred seventy-three fixtures on the maxilla posterior were included for this study from all the patients who underwent an installation of the dental implant fixture from January 2010 to December 2014 at the Department of Oral and Maxillofacial Surgery in Pusan National University Dental Hospital (Yangsan, Korea). The postoperative implant stability quotient (ISQ) value, fixture diameter and length, presence of either bone graft or sinus lift, and graft material were included in the reviewed factors. The width and height of the bone bed was assessed via preoperative cone beam CT image analysis. The postoperative ISQ value was taken just before loading by using the OsstellTM $mentor^{(R)}$ (Integration Diagnostics AB, Gothenburg, Sweden). The t test and ANOVA methods were used in the statistical analysis of the data. Results: Mean ISQ of all the included data was 79.22. Higher initial bone height, larger fixture diameter, and longer fixture length were factors that influence the implant stability on the posterior edentulous maxilla. On the other hand, the initial bone width, bone graft and sinus elevation procedure, graft material, and approach method for sinus elevation showed no significant impact associated with the implant stability on the posterior edentulous maxilla. Conclusions: It is recommended to install the fixtures accurately in a larger diameter and longer length by performing bone graft and sinus elevation.

Long-term effect of implant-abutment connection type on marginal bone loss and survival of dental implants

  • Young-Min Kim;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제52권6호
    • /
    • pp.496-508
    • /
    • 2022
  • Purpose: This study aimed to compare the long-term survival rate and peri-implant marginal bone loss between different types of dental implant-abutment connections. Methods: Implants with external or internal abutment connections, which were fitted at Gangneung-Wonju National University Dental Hospital from November 2011 to December 2015 and followed up for >5 years, were retrospectively investigated. Cumulative survival rates were evaluated for >5 years, and peri-implant marginal bone loss was evaluated at 1- and 5-year follow-up examinations after functional loading. Results: The 8-year cumulative survival rates were 93.3% and 90.7% in the external and internal connection types, respectively (P=0.353). The mean values of marginal bone loss were 1.23 mm (external) and 0.72 mm (internal) (P<0.001) after 1 year of loading, and 1.20 mm and 1.00 mm for external and internal abutment connections, respectively (P=0.137) after 5 years. Implant length (longer, P=0.018), smoking status (heavy, P=0.001), and prosthetic type (bridge, P=0.004) were associated with significantly greater marginal bone loss, and the use of screw-cement-retained prosthesis was significantly associated (P=0.027) with less marginal bone loss. Conclusions: There was no significant difference in the cumulative survival rate between implants with external and internal abutment connections. After 1 year of loading, marginal bone loss was greater around the implants with an external abutment connection. However, no significant difference between the external and internal connection groups was found after 5 years. Both types of abutment connections are viable treatment options for the reconstruction of partially edentulous ridges.

혈소판 농축혈장과 법랑기질 단백질이 임플란트 골 연상 골 재생에 미치는 영향에 관한 비교연구 (Comparative study on the Effects of Platelet-Rich Plasma and Enamel Matrix Protein on Supracrestal bone Regeneration of Dental Implant)

  • 은희종;임성빈;정진형;홍기석;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제35권1호
    • /
    • pp.235-250
    • /
    • 2005
  • The current interest in periodontal tissue regeneration has lead to research in bone graft, root surface treatments, guided-tissue regeneration, administration of growth factors, and the use of enamel matrix protein as possible means of regenerating lost periodontal tissue. Several studies have shown that a strong correlation between platelet-rich plasma and the stimulation of remodeling and remineralization of grafted bone exits, resulting in a possible increase of 15-30% in the density of bone trabeculae. The purpose of this study was to study the histopathological results and differences between the use of platelet-rich plasma and the use of enamel matrix $protein(Emdogain^?)$ about bone regeneration at the implant. Implant fixtures were inserted and graft materials placed into the left femur in the experimental group, while the only implant fixtures placed in the control group. In the first experimental group, platelet-rich plasma and xenograft were placed at the supracrestally placed implant site, and in the second experimental group, $Emdogain^{(R)}$ and xenograft placed at the supracrestally placed fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment are as follows: 1. The rate of osseointegration to the fixture threads was found to be greater in the experimental group compared to in the control group. 2. The histopathological findings showed that the bone regeneration, the partial osseointegration existed at 4 weeks, and that osseointegration and bone density increaced in the experimental groups at 8 weeks. 3. The results showed that new bone formation and bone remodeling increased in the area near to the fixture in the first and second experimental groups at 8 weeks than at 4 weeks. The results showed that in the area distant from the fixture, new bone formation did not increase and bone remodeling decreased in the first experimental group at 4, 8 weeks, and that new bone formation increased in the second experimental group. 4. The histopathological findings showed that AZ deposition in the first experimental group was remarkable at 2, 8 weeks, and in the second experimental group at 2, 4, 8 weeks in the area distant from the fixture threads.