• Title/Summary/Keyword: Bone Strength

Search Result 500, Processing Time 0.035 seconds

Changes of Strength and Stiffness of Freeze-Dried Bovine Cortical Bone according to Rehydration Time in Electrolyte Solution (동결건조한 소의 치밀골에서 전해질용액의 침지시간에 따른 Strength와 Stiffness의 변화)

  • 김남수;장세웅;김희은;정인성;최성진;최인혁
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.482-488
    • /
    • 2003
  • Transplanted cortical bone grafts of freeze-dried bones also function as sustaining for defected bones, however, it has less strength and is fragile without rehydration. In this study, strength and stiffness of freeze-dried bone from bovine cortical bones were evaluated by three point bending test according to different time frames such as rehydration times of 0.5, 3, 6, 12 and 24 hrs in electrolyte solution and was compared with those of frozen bones. The strength and stiffness of frozen bone were $264.4\pm36.7$ MPa, $17.0\pm1.5$ GPa, respectively. The strength and stiffness of freeze-dried bone which fat was removed by treatments of chloroform-methanol solutions for 6 days, then was freeze-dried at $-80^{\circ}C$ and sterilized with ethylene oxide gas, were $224.9\pm27.6$ MPa, $19.2\pm2.8$ GPa, respectively. The strength and stiffness of feeze-dried bone were decreased 15.0% and increased 13.2% than these of frozen bone, respectively. The strength and stiffness of freeze-dried bone rehydrated for 6 hrs were restored to 96.0% strength and 99.2% stiffness of frozen bone. The rehydration time of freeze-dried bone which had the highest strength and stiffness was six hours and three hours, respectively. The results of the mathematica program for the variation of the strength and stiffness showed 3 hours and 30 minutes of rehydration time in electrolyte solution for the best condition in the strength and stiffness which was adequate to treat freeze-dried cortical bone.

A Study of Related Factors in the Bone Mineral Density of the Institutionalized Elderly (시설노인의 골다공증 관련요인 연구)

  • Kim, Hee-Ja
    • Research in Community and Public Health Nursing
    • /
    • v.8 no.1
    • /
    • pp.31-44
    • /
    • 1997
  • The purpose of this study was to measure and determine the relationship of femoral neck and lumbar bone mineral density with their and related factors. It were measured and determined the relationships among bone mineral density, bone mineral content in the lumbar and femoral neck, muscle strength (arm, back, leg), muscle endurance, instrumental activity of daily living (IADL), quality of life, cognitive perceptual variables(self efficacy, perceived health status), age, age at menopausal period. The twenty five subjects participating in this study consisted of twelve males and thirteen females at a C-institution in Chung Buk province. The mean age of subjects was 73.64 years. The data was collected from August, 1993 to September, 1993. The data was analyzed with $x^2-test$, t-test, Correlation, multiple regression using a SPSS pc+ program. 1. The mean femoral neck bone mineral density was $0.636g/cm^2$, 66.7% of young bone mineral density, the mean lumbar($L_2-L_4$) bone mineral density was $0.807g/cm^2$, 79.86% of young bone mineral density. The mean fermoral neck bone mineral content was 2.906g and the mean lumbar bone mineral content was 36.898g. 2. The mean muscle strength was 17.14kg(grip strength), 32.05kg(back lift strength), 17.14kg (leg lift strength) and the mean muscle endurance was 9.92times. 3. Men showed a significantly higher score (p<0.01) in muscle strength and muscle endurance than women, as well as a significantly higher score on self efficacy and perceived health status(p<0.05). 4. The femur neck bone mineral density had a significant correlation(p<0.0l) with leg lift strength, back lift strength, and their was a significant correlations (p<0.05) with arm strength and muscle endurance. Lumbar ($L_2-L_2$) bone mineral density had a significant correlation(p<0.05) with muscle endurance, grip strength and IADL. 5. With the multiple regression analysis the most significant predictor for lumbar bone mineral density were IADL, the most significant predictor for femoral neck bone mineral density was leg strength. This study concluded: As the mean bone mineral density and bone mineral content were low, the aged showed osteopenia. Bone mineral density, muscle strength and IADL were correlated. The aged could pro mote muscle strength, bone mineral density and IADL through Leg Press exercise which was safe and efficient for the aged. This Leg Press exercise contributed to prevention of osteoporosis and promoted the health of the aged.

  • PDF

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.

A Study on the Mechanical Properties of Artificial Bone Structure Fabricated Using a 3D Printer (3D Printer로 제작된 인공뼈 구조에 대한 기계적 특성에 관한 연구)

  • Heo, Yeong-Jun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.35-41
    • /
    • 2020
  • The structure of the femur bone was analyzed. Moreover, the mechanical strength of the bone was determined by considering two parameters, namely, the outer wall thickness and inner filling density to realize the 3D printing of a cortical bone and spongy bone by using a fused deposition modeling type 3D printer and ABS material. A basic experiment was conducted to evaluate the variation trend in the mechanical strength of the test specimens with the change in the parameters. Based on the results, the parameters corresponding to the highest mechanical strength were selected and applied to the artificial bone, and the mechanical strength of the artificial bones was examined under a load. Moreover, we proposed an approximation method for the 3D printing parameters to enable the comparison of the actual bones and artificial bones in terms of the strength and weight.

Differential effects of jump versus running exercise on trabecular bone architecture and strength in rats

  • Ju, Yong-In;Choi, Hak-Jin;Ohnaru, Kazuhiro;Sone, Teruki
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • [Purpose] This study compared differences in trabecular bone architecture and strength caused by jump and running exercises in rats. [Methods] Ten-week-old male Wistar rats (n=45) were randomly assigned to three body weight-matched groups: a sedentary control group (CON, n=15); a treadmill running group (RUN, n=15); and a jump exercise group (JUM, n=15). Treadmill running was performed at 25 m/min without inclination, 1 h/day, 5 days/week for 8 weeks. The jump exercise protocol comprised 10 jumps/day, 5 days/week for 8 weeks, with a jump height of 40 cm. We used microcomputed tomography to assess microarchitecture, mineralization density, and fracture load as predicted by finite element analysis (FEA) at the distal femoral metaphysis. [Results] Both jump and running exercises produced significantly higher trabecular bone mass, thickness, number, and fracture load compared to the sedentary control group. The jump and running exercises, however, showed different results in terms of the structural characteristics of trabecular bone. Jump exercises enhanced trabecular bone mass by thickening the trabeculae, while running exercises did so by increasing the trabecular number. FEA-estimated fracture load did not differ significantly between the exercise groups. [Conclusion] This study elucidated the differential effects of jump and running exercise on trabecular bone architecture in rats. The different structural changes in the trabecular bone, however, had no significant impact on trabecular bone strength.

Wheelchair martial arts practitioners have similar bone strength, sitting balance and self-esteem to healthy individuals

  • Fong, Shirley S.M.;Ng, Shamay S.M.;Li, Anthony O.T.;Guo, X.
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Objective: The aim of this study was to compare the radial bone strength, sitting balance ability and global self-esteem of wheelchair martial arts practitioners and healthy control participants. Design: Cross-sectional study. Methods: Nine wheelchair martial art practitioners with physical disabilities and 28 able-bodied healthy individuals participated in the study. The bone strength of the distal radius was assessed using the Sunlight Mini-Omni Ultrasound Bone Sonometer; sitting balance was quantified using the modified functional reach test (with reference to a scale marked on the wall); and the self-administered Rosenberg self-esteem (RSE) scale was used to measure the global self-esteem of the participants. The velocity of the ultrasound wave (speed of sound, m/s) traveling through the outer surface of the radial bone was measured and was then converted into a T-score and a Z-score. These ultrasound T-score and Z-score that represent bone strength; the maximum forward reaching distance in sitting (cm) that represents sitting balance; and the RSE total self-esteem score that indicates global self-esteem were used for analysis. Results: The results revealed that there were no statistically significant between-group differences for radial bone-strength, maximum forward reaching distance, or self-esteem outcomes. Conclusions: The wheelchair martial arts practitioners had similar radial bone strength, sitting balance performance and self-esteem to able-bodied healthy persons. Our results imply that wheelchair martial arts might improve bone strength, postural control and self-esteem in adult wheelchair users. This new sport-wheelchair martial arts-might be an exercise option for people with physical disabilities.

Biomechanical Properties of Cortical Bone in Bovine Long Bones (소의 장골에서 치밀골의 생체역학적인 특성)

  • 김남수;황의희;최성진;정인성;최은경;최인혁
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.345-350
    • /
    • 2003
  • We were preferred bovine cortical bone to the others in xenobonegrafts for human and small animals, because those were not limited to supply and have sufficient size for bone transplantation. The strength (ST) and stiffness (SF) of cortical bone in bone grafts were very important. The strength and stiffness of cortical bone were much difference according to position of long bone in bovine limbs because which were biomechanical different to bear body weight. Therefore, we determinated by three bending point test methods the strength and stiffness of cortical bone which were collected in diaphysis of humerus, radius, femur and tibia of bovine. In the results, the strengths and stiffness among these were highest in radius by ST: 253.84$\pm$40.80 MPa, SF: 7.89$\pm$1.91 Gpa and lowest in humerus by ST: 185.69$\pm$28.54 MPa, SF: 6.21$\pm$1.22 Gpa.

Association between Low Hand Grip Strength and Decreased Femoral Neck Bone Mineral Density in Korean Fishery Workers (어업종사자에서 낮은 악력과 대퇴부 경부 골밀도 감소의 연관성)

  • Mi-Ji Kim;Gyeong-Ye Lee;Joo Hyun Sung;Seok Jin Hong;Ki-Soo Park
    • Journal of agricultural medicine and community health
    • /
    • v.48 no.4
    • /
    • pp.275-284
    • /
    • 2023
  • Objectives: This study aimed to assess hand grip strength and femoral neck bone mineral density levels among Korean fishery workers and investigate their association. Methods: Hand grip strength and femoral neck bone mineral density were measured in a survey and health examination conducted in 2021 among fishery workers in a southern region of South Korea. Covariates including gender, age, education level, income level, smoking behavior, drinking behavior, family history of hip fractures, use of calcium and vitamin D supplements, hypertension, diabetes, regular exercise, and body mass index were investigated. Multiple regression analysis was employed to assess the association between hand grip strength and femoral neck bone mineral density. Results: Among 147 fishery workers, 8.16% exhibited low hand grip strength levels indicative of possible sarcopenia, and a significant association was found between low hand grip strength and decreased femoral neck bone mineral density (β = -89.14, 95% CI = -160.50, -17.78). Additionally, factors such as women gender, advanced age, family history of hip fractures, and a body mass index below 25 kg/m2 were associated with decreased femoral neck bone mineral density. In the subgroup analysis by gender, a correlation between low hand grip strength and decreased femoral neck bone mineral density was observed only in men. Conclusions: Further research is needed to explore various determinants and intervention strategies to prevent musculoskeletal disorders among fishery workers, ultimately enhancing their quality of life and well-being.

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF