• Title/Summary/Keyword: Bone Development

Search Result 1,082, Processing Time 0.028 seconds

Comparison and analysis of chest X-ray-based deep learning loss function performance (흉부 X-ray 기반 딥 러닝 손실함수 성능 비교·분석)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2021
  • Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process.

The KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD): A Korean Chronic Kidney Disease Cohort

  • Oh, Kook-Hwan;Park, Sue K.;Kim, Jayoun;Ahn, Curie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.4
    • /
    • pp.313-320
    • /
    • 2022
  • The KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD) was launched in 2011 with the support of the Korea Disease Control and Prevention Agency. The study was designed with the aim of exploring the various clinical features and characteristics of chronic kidney disease (CKD) in Koreans, and elucidating the risk factors for CKD progression and adverse outcomes of CKD. For the cohort study, nephrologists at 9 tertiary university-affiliated hospitals participated in patient recruitment and follow-up. Biostatisticians and epidemiologists also participated in the basic design and structuring of the study. From 2011 until 2016, the KNOW-CKD Phase I recruited 2238 adult patients with CKD from stages G1 to G5, who were not receiving renal replacement therapy. The KNOW-CKD Phase II recruitment was started in 2019, with an enrollment target of 1500 subjects, focused on diabetic nephropathy and hypertensive kidney diseases in patients with reduced kidney function who are presumed to be at a higher risk of adverse outcomes. As of 2021, the KNOW-CKD investigators have published articles in the fields of socioeconomics, quality of life, nutrition, physical activity, renal progression, cardiovascular disease and outcomes, anemia, mineral bone disease, serum and urine biomarkers, and international and inter-ethnic comparisons. The KNOW-CKD researchers will elaborate a prediction model for various outcomes of CKD such as the development of end-stage kidney disease, major adverse cardiovascular events, and death.

Deinococcus radiodurans R1 Lysate Induces Tolerogenic Maturation in Lipopolysaccharide-Stimulated Dendritic Cells and Protects Dextran Sulfate Sodium-Induced Colitis in Mice

  • Song, Ha-Yeon;Han, Jeong Moo;Kim, Woo Sik;Lee, Ji Hee;Park, Woo Yong;Byun, Eui-Baek;Byun, Eui-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.835-843
    • /
    • 2022
  • Deinococcus radiodurans is an extremophilic bacterium that can thrive in harsh environments. This property can be attributed to its unique metabolites that possess strong antioxidants and other pharmacological properties. To determine the potential of D. radiodurans R1 lysate (DeinoLys) as a pharmacological candidate for inflammatory bowel disease (IBD), we investigated the antiinflammatory activity of DeinoLys in bone marrow-derived dendritic cells (BMDCs) and a colitis mice model. Lipopolysaccharide (LPS)-stimulated BMDCs treated with DeinoLys exhibited alterations in their phenotypic and functional properties by changing into tolerogenic DCs, including strongly inhibited proinflammatory cytokines (TNF-α and IL-12p70) and surface molecule expression and activated DC-induced T cell proliferation/activation with high IL-10 production. These phenotypic and functional changes in BMDCs induced by DeinoLys in the presence of LPS were abrogated by IL-10 neutralization. Furthermore, oral administration of DeinoLys significantly reduced clinical symptoms against dextran sulfate sodium-induced colitis, including body weight loss, disease activity index, histological severity in colon tissue, and lower myeloperoxidase level in mice. Our results establish DeinoLys as a potential anti-inflammatory candidate for IBD therapy.

Derivation of endothelial cells from porcine induced pluripotent stem cells by optimized single layer culture system

  • Wei, Renyue;Lv, Jiawei;Li, Xuechun;Li, Yan;Xu, Qianqian;Jin, Junxue;Zhang, Yu;Liu, Zhonghua
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2020
  • Regenerative therapy holds great promise in the development of cures of some untreatable diseases such as cardiovascular diseases, and pluripotent stem cells (PSCs) including induced PSCs (iPSCs) are the most important regenerative seed cells. Recently, differentiation of human PSCs into functional tissues and cells in vitro has been widely reported. However, although porcine reports are rare they are quite essential, as the pig is an important animal model for the in vitro generation of human organs. In this study, we reprogramed porcine embryonic fibroblasts into porcine iPSCs (piPSCs), and differentiated them into cluster of differentiation 31 (CD31)-positive endothelial cells (ECs) (piPSC-derived ECs, piPS-ECs) using an optimized single-layer culture method. During differentiation, we observed that a combination of GSK3β inhibitor (CHIR99021) and bone morphogenetic protein 4 (BMP4) promoted mesodermal differentiation, resulting in higher proportions of CD31-positive cells than those from separate CHIR99021 or BMP4 treatment. Importantly, the piPS-ECs showed comparable morphological and functional properties to immortalized porcine aortic ECs, which are capable of taking up low-density lipoprotein and forming network structures on Matrigel. Our study, which is the first trial on a species other than human and mouse, has provided an optimized single-layer culture method for obtaining ECs from porcine PSCs. Our approach can be beneficial when evaluating autologous EC transplantation in pig models.

Development of Bib Pants Design and Pattern for Cycling Smart Wear (사이클링 스마트웨어 제작을 위한 빕 팬츠 디자인 및 패턴 개발)

  • Yunyoung, Kim;Byeongha, Ryu;Woojae, Lee;Kikwang, Lee;Rira, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.91-104
    • /
    • 2022
  • In this study, a cycling smart wear for measuring cycling posture and motion was developed using a three-dimensional motion analysis camera and an IMU inertial sensor. Results were compared according to parts to derive the optimal smart device attachment location, enabling correct posture measurement and cycle motion analysis to design a pattern. Conclusions were as follows: 1) 'S-T8' > 'S-T10' > 'S-L4' was the most significant area for each lumbar spine using a 3D motion analysis system with representative posture change (90°, 60°, 30°) to derive incisions and size specifications; 2) the part with the smallest relative angle change among significant section reference points during pattern design was applied as a reference point for attaching a cycling smart device to secure detachable safety of the device. Optimal locations for attaching the cycling device were the "S-L4" hip bone (Sacrum) and lumbar spine No. 4 (Lumbar 4th); 3) the most suitable sensor attachment location for monitoring knee induction-abduction was the anatomical location of the rectus femoris; 4) a cycling smart wear pattern was developed without incision in the part where the sensor and electrode passed. The wearing was confirmed with 3D CLO. This study aims to provide basic research on exercise analysis smart wear, to expand the smart cycling area that could only be realized with smart devices and smart watches attached to current cycles, and to provide an opportunity to commercialize it as cycling smart wear.

Stewartia pseudocamellia and Torilis japonica Extracts Inhibit RANKL-induced Osteoclastogenesis in RAW 264.7 Cells

  • Anh-Thu Nguyen;Chun Soo Na;Ki-Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.120-128
    • /
    • 2023
  • Osteoporosis is a disease that causes the weakening of bone by increasing porosity, which often results in fractures. Osteoporosis treatment measures include the use of Bisphosphonates and estrogen. However, these treatments cannot be used in the long term as these treatments have adverse side effects. Therefore, there is a need to identify better and safer treatment options. For this, 63 plant extracts were screened and among them, six extracts showed high anti-osteoclastic activity with low cytotoxicity. Of these six extracts, three extracts, Cudrania tricuspidata (P371), Ulmus davidiana var. japonica (P401), and Torilis japonica (P411), showed more than 50 percent osteoclast inhibition. While the remaining, Stewartia pseudocamellia extracts I and II (P370, P397) and Cuscuta chinensis (P418), showed moderate or between 40-50 percent osteoclast inhibition. Among all the extracts, Torilis japonica (P411) showed the highest inhibitory action against osteoclast development. Torilis japonica (P411) primary components include Kaempferol, Quercetin, and Luteolin, all proven to inhibit osteoclastogenesis. Stewartia pseudocamellia extracts I and II (P370 and P397) showed moderate or 44% osteoclast inhibition. Stewartia pseudocamellia extract II (P397) enhanced the growth of RAW 264.7 cells by 19%. Torilis japonica (P411) and Stewartia pseudocamellia extract II (P397) suppressed the expression of osteoclast-specific genes in RANKL-induced osteoclastogenesis in RAW 246.7 cells. Torilis japonica (P411) extracts even increased osteoblast-specific RUNX2 gene expression. This results provide that six extracts could be used as a potential treatment option for osteoporosis disease with the extracts of Torilis japonica (P411) and Stewartia pseudocamellia (P397) as an ideal candidates. However, the combination of the extract with higher osteoclastic inhibition and less toxic effects with further analysis should be recommended.

Clinical and radiological characteristics of odontomas: A retrospective study of 90 cases

  • Dung Kim Nguyen;Duong Van Huynh
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • Purpose: Odontomas represent a common clinical entity among odontogenic tumors, but are not well-addressed in the Vietnamese population. The present study aimed to determine the clinical and preclinical characteristics of odontomas and associated factors in the Vietnamese population. Materials and Methods: This retrospective study retrieved data from histopathological diagnoses from 2 central hospitals of Odonto-Stomatology in Ho Chi Minh City, Vietnam during 2004-2017. The odontomas were classified as complex (CxOD) or compound (CpOD) subtypes. The epidemiological, clinical, and radiological characteristics of the odontomas, stratified by subtype and sex, were obtained and analyzed. Results: Ninety cases, consisting of 46 CxODs and 44 CpODs, were included. The average age of patients was 32.4 (±20.2) years. The patients with CxOD were older than those with CpOD (P<0.05). Clinically, 67% of patients showed an intraoral bone expansion. Approximately 60% of patients with CxOD exhibited a painful symptom, about 3-fold more than those with CpOD (P<0.05), whereas almost all patients with CpOD exhibited perturbations of dentition, unlike those with CxOD (P<0.05). Radiologically, CxOD was characterized by a larger dimension than CpOD in both sexes (P<0.05), and CpOD induced complications in adjacent teeth more often than CxOD (P<0.05). The development of odontoma with advancing age differed significantly in odontoma subtypes related to their pathological origins, and between the sexes, resulting from different physiological states. Conclusion: The findings of this study highlight the value of clinical and radiological features of odontomas and their associated factors for the early diagnosis and adequate treatment of younger patients.

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.

Diverse and predominantly sub-adult Epinephelus sp. groupers from small-scale fisheries in South Sulawesi, Indonesia

  • Nadiarti Nurdin Kadir;Aidah A. Ala Husain;Dody Priosambodo;Muhammad Jamal;Irmawati;Indrabayu;Abigail Mary Moore
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.380-392
    • /
    • 2023
  • Groupers (Family Epinephelidae) are commonly caught in data-poor small-scale multi-species fisheries for sale on both export and domestic markets. This study presents data on the species composition and size/life-stage structure of Epinephelus spp. groupers caught by small-scale fishers and sold locally in the Indonesian province of South Sulawesi. Data were collected from fishing ports and local markets at 12 sites representing the three seaways around South Sulawesi (Makassar Strait, Flores Sea, Gulf of Bone). Each specimen (n = 3,398) was photographed alongside an object of known length, and total length (TL) was obtained using the Rapid Scaling on Object (RASIO). Of the 23 species identified, four (Epinephelus areolatus, Epinephelus ongus, Epinephelus quoyanus, and Epinephelus fasciatus) collectively comprised 69% of the catch, while the 13 least abundant species contributed less than 5%. The catch was dominated (67%) by the subadult life-stage, with just under 20% in the adult class. Juveniles dominated the catch of Epinephelus fuscoguttatus, a valuable export commodity. Observations of early maturity as well as the sizeable gap between length at first capture (Lc) and length at first maturity (Lm) indicate recruitment overfishing of most species, with the notable exception of Epinephelus rivulatus. The proportion of adult fish was low (≈5%-30%) for the twelve most abundant species (E. areolatus, E. ongus, Epinephelus quoyanus, E. fasciatus, Epinephelus coioides, Epinephelus faveatus, Epinephelus sexfasciatus, Epinephelus maculatus, Epinephelus bleekeri, Epinephelus corallicola, E. fuscoguttatus, Epinephelus polyphekadion). For two moderately abundant species (E. faveatus and E. malabaricus), TL < Lm for all specimens. The limited data available indicate spawning ratio is lower than reported from deep-water fisheries of E. areolatus and E. coioides. The results call for targeted research to fill knowledge gaps regarding the biology and ecology of groupers exploited mainly for domestic markets; highlight the need for species-level data to inform management policies such as minimum legal size regulations; and can contribute towards species-level status assessments.

RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15

  • Hao Ding;Xiaoliang Mei;Lintao Li;Peng Fang;Ting Guo;Jianning Zhao
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.231-244
    • /
    • 2023
  • Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.