• Title/Summary/Keyword: Bonding pressure

Search Result 392, Processing Time 0.026 seconds

Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber (대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • To increase the adhesive strength of acrylonitrile butadiene rubber(NBR) and steel plate, the atmospheric pressure flame plasma(APFP) treatment device is applied. The effect of various conditions(processing velocity and distance) is experimentally investigated to ascertain the optimum conditions to yield the best adhesive properties. It is found that the optimum distance between burner port and steel plate is 40mm and the optimum processing velocity is 50m/min at given condition. When the surface is coated twice with the bonding agent, the adhesion strength of APFP treated steel plate is increased to about 20.5%. It suggests that the surface modification of steel by flame plasma treatment at atmospheric pressure is a proper and applicable method to improve the adhesion strength between steel and rubber.

Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers (직관 마이크로채널 PCHE의 열전달특성 및 압력강하)

  • Kim, Yoon-Ho;Seo, Jung-Eun;Choi, Young-Jong;Lee, Kyu-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

Preparation and Investigation of Characteristics of Diamond-like Carbon Thin Films by Acetylene Plasma (아세틸렌 플라스마를 이용한 다이아몬드성 탄소 박막의 제작 및 특성)

  • Youk, Do Jin;Kang, Sung Soo;Lee, Won Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The a-C:H films have been grown on the glass substrate by PECVD mathod, where plasma was generated with a 60Hz line power source. The carbonization is checked from peak intensities of D($sp^3$) and G($sp^2$) peaks in Raman spectra. The hydronization and C-H bonding status in films can also be determined from FTIR results. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $C_2H_2$. Judging from above results, we can conclude that the best value for partial pressure of $C_2H_2$ in growing process of thick films is about 15%.

  • PDF

Ophthalmic Lens Coating by a-C:H Film (수소화된 비정질 탄소박막(a-C:H)에 의한 안경렌즈 코팅)

  • Lee, Won-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • The behaviors of diamond deposition using microwave plasma chemical vapor deposition method have been studied by varying the concentration of methane in the methane - hydrogen gas mixture. The carbonization is checked from peak intensities of D($sp^3$) and G($sp^2$) peaks in Raman spectra. The hydronization and C-H bonding status in films can also be determined from FTIR results. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $CH_4$ Judging from above results, we can conclude that the best value for partial pressure of $CH_4$ in growing process of thick films is about 13.8%.

  • PDF

A Study on Panel Manufacture and Packaging Method for Digital FED (디지털 FID용 패널제작과 패키 방법에 관한 연구)

  • Kim, Soo-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.29-35
    • /
    • 2009
  • Field emission displays(FED) are currently being study as a potential flat technology. The purpose of this project shows the research result of vacuum packaging technology for the development of FED. For FED vacuum packaging, the bonding of glass/glass, the exhaust of vacuum and getter technology have been studied for vacuum packaging technology The simulation and vacuum sealing, and glass/glass bonding are also extensively studied. The glass/glass bonding is formed by using the frit glass and the Inside pressure of complete panel showed of $2{\times}10^{-5}$[Torr]. As a getter result, the increase of pressure has been showed the decrease of outgassing effect by using thin film getter.

Densification Characteristics of Softwood Veneers Treated by Resin Impregnation (침엽수단판의 수지함침처리에 의한 압밀화 특성)

  • 서진석
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.21-29
    • /
    • 2003
  • This study was carried out to investigate characteristics of plywood overlaid with softwood veneers densified by resin impregnation and compression. The resin impregnability of Korean pine veneer under atmospheric pressure soaking was greater than that of larch, and impregnability of melamine resin was slightly greater than phenolic resin. It was suggested that resin impregnation ratio was affected by density and thickness of veneer. The largest melamine resin impregnation ratio of 50.7% was obtained with 1.26mm thick Korean pine veneer, and the lowest phenolic resin impregnation ratio of 11.7% with 3.41mm thick larch veneer. Therefore, it was suggested that the vacuum-pres sure-soak treatment is required at thick larch veneer. In densifying resin-impregnated veneers, densification ratio from 13.4 to 31.2% was obtained by high pressure from 15.6 to $20.8kgf/cm^2$. Impregnation of melamine resin also showed relatively greater at densification than that of phenolic resin. So it showed the degree of densification of about 20% or greater. It was seemed that adhesive bonding strength of plywood(base panel) which was directly pressed and overlaid with resin-impregnated veneer was affected by resin tackiness after resin impregnation followed by semi-drying. In laboratory scale, melamine resin impregnation was more favorable for the development of adhesive bonding strength owing to moisture control.

  • PDF

Effect of Surface Roughness on Weld-bonding Process using Heterogeneous Materials (델타스폿용접을 이용한 이종소재 웰드본딩공정 시 표면 거칠기 부여 가공방법의 영향)

  • Kim, Young-Hyun;Kim, Jaewoong;Kim, Jisun;Kim, Young-Gon;Pyo, Changmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.102-108
    • /
    • 2020
  • The demand for lightweight materials and high-strength steel has rapidly increased to help reduce the weight of a vehicle body; it improves the fuel efficiency of automobiles and provides passenger safety. Additionally, as the material becomes thinner, the demand for its resistance against corrosion becomes higher. Hence, the application of the surface-treated steel sheet has surged rapidly. In this study, a weld bonding experiment using a delta spot welding machine is performed on a thin sheet of a different material (Al6061-T6/GA440). The thickness of the material was kept at 1 mm to reduce the weight of the automobile body parts. Additionally, the purpose of this study is to control the heat input by applying the welding conditions of a multi-stage pressure pattern to improve corrosion resistance shear strength. The analysis of nugget diameter measurement, shear tensile test, and salt spray test was performed to achieve the aim.

Superplastic Forming /Diffusion Bonding Processes Design Using a Finite Element Method (유한요소법을 이용한 초소성 성형/확산접합 공정 설계)

  • 홍성석;이종수;김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.155-161
    • /
    • 1995
  • Superplastic forming/diffusion bonding(SPF/DB) processes are analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted using two-node line element based on membrane approximation for plane strain shapes. Material behavior during SPF/DB of the integral structures with complicated shapes are investigated. The tying condition is employed for the analysis inter-sheet contact problems. A movement of rib structure is successfully prodicted during the forming.

  • PDF

Nano-Scale Cu Direct Bonding Technology Using Ultra-High Density, Fine Size Cu Nano-Pillar (CNP) for Exascale 2.5D/3D Integrated System

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2016
  • We propose nano-scale Cu direct bonding technology using ultra-high density Cu nano-pillar (CNP) with for high stacking yield exascale 2.5D/3D integration. We clarified the joining mechanism of nano-scale Cu direct bonding using CNP. Nano-scale Cu pillar easily bond with Cu electrode by re-crystallization of CNP due to the solid phase diffusion and by morphology change of CNP to minimize interfacial energy at relatively lower temperature and pressure compared to conventional micro-scale Cu direct bonding. We confirmed for the first time that 4.3 million electrodes per die are successfully connected in series with the joining yield of 100%. The joining resistance of CNP bundle with $80{\mu}m$ height is around 30 m for each pair of $10{\mu}m$ dia. electrode. Capacitance value of CNP bundle with $3{\mu}m$ length and $80{\mu}m$ height is around 0.6fF. Eye-diagram pattern shows no degradation even at 10Gbps data rate after the lamination of anisotropic conductive film.

A Study on the Characteristics of Cast Bonding Aluminium Alloy and Fe-17wt%Cr Steel with Vacuum Die Casting (진공다이캐스트법에 의한 Al합금과 Fe-17wt%Cr 강의 주조접합 특성연구)

  • Kim, Yong-Hyun;Kim, Eok-Soo;Kim, Heung-Sik;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.410-418
    • /
    • 1999
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Fe-17wt%Cr steel (stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemical etched to have optimum pit size (above 0.2 mm) and pit density (above 30%). The implementation of vacuum die casting by using surface treated stainless steel (Fe-17wt%Cr Steel) produces good trial products having acceptable cast-bonding ability. The enabling conditions for cast-bonding are pouring temperature $690^{\circ}C$, filling speed 30 m/sec and casting pressure $800\;kg/cm^2$. The microscopic observation of cast-bonded Al/Fe-17wt%Cr steel does not show any evidence of intermetallic compounds. The bonding strength of trial products is $150-400\;kg/cm^2$ and this is stronger than conventionally cladded metal having $30-70\;kg/cm^2$.

  • PDF