• 제목/요약/키워드: Bonding of Dissimilar Materials

검색결과 48건 처리시간 0.025초

이종재료 접합을 위한 초음파 진동자 설계 (Design Method for Ultrasonic Transducer to Bonding with Dissimilar Materials)

  • 정안목;김철호
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.3-8
    • /
    • 2012
  • In an attempt to improve adhesion strength between glass and metal due to use of Pb-free solder as a sealant between glass and metal in the manufacturing process of vacuum insulation window glass to maintain the vacuum volume, ultrasonic energy is often applied during the process of Pb-free sealing. In this study, we propose an ultrasonic vibrator with a 4 mm end tip radius which performs resonance frequency of 60 kHz and 14 um or higher vibration displacement. A frequency variation due to applied pressure on piezo disks, which was excluded in the computer simulation, was verified experimentally, and we have demonstrated a 17 um vibration displacement at 50 V input through the performance test of a vibrator constructed with our specification.

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.

전기자동차 배터리 모듈 접합 기술 리뷰 (Battery Module Bonding Technology for Electric Vehicles)

  • 방정환;김신일;김윤찬;유동열;김동진;이태익;김민수;박지용
    • 마이크로전자및패키징학회지
    • /
    • 제30권2호
    • /
    • pp.33-42
    • /
    • 2023
  • 전기자동차 산업은 전 세계적 환경규제 정책과 더불어 각 국 정부의 지원이 맞물려 성장이 가속화 되고 있다. 따라서 전기자동차용 배터리에 대한 수요는 지속적으로 증가할 것으로 예상된다. 전기자동차 배터리 시스템은 다수의 배터리 셀 및 모듈을 전기적으로 연결시켜 하나의 배터리 팩으로 적용된다. 이러한 배터리 셀 및 모듈을 접합하는 기술은 성능, 용량 및 안정성에 직접적인 영향을 주기 때문에 매우 중요하다. 따라서 기계적, 전기적 특성 등 여러 기준들을 고려하여 견고하게 조립되어야 한다. 각각의 접합 기술은 서로 다른 장점과 한계를 가지고 있으며, 배터리 셀에 적용할 때에는 몇 가지 기준이 고려되어야 한다. 본 논문에서는 다양한 배터리 셀 형태에 따른 접합기술의 적용 현황을 조사하고, 저항 용접 및 레이저, 초음파 등 대표적 접합기술에 대한 특징과 장단점을 제공하고자 한다.

Ion Beam을 이용한 사파이어($Al_2O_3$) 표면개질 및 금(Au) 박막증착: 접합성 향상 및 접학기구에 대한 연구 (Ion beam induced surface modifications of sapphire and gold film deposition: studies on the adhesion enhancement and mechanisms)

  • 박재원;이광원;이재형;최병호
    • 한국진공학회지
    • /
    • 제8권4B호
    • /
    • pp.514-518
    • /
    • 1999
  • Gold (Au) is not supposed to react with sapphire(single crystalline ) under thermodynamic equillibrium, therefore, a strong adhesion between these two dissimilar materials is not expected. However, pull test showed that the gold film sputter-deposited onto annealed and pre-sputtered sapphire exhibited very strong adhesion even without post-deposition annealing. Strongly and weakly adhered samples as a result of the pull testing were selected to investigate the adhesion mechanisms with Auger electron spectroscopy. The Au/ interfaces were analyzed using a new technique that probes the interface on the film using Auger electron escape depth. It revealed that one or two monolayers of Au-Al-O compound formed at the Au/Sapphire interface when AES in the UHV chamber. It showed that metallic aluminum was detected on the surface of sapphire substrates after irradiating for 3 min. with 7keV Ar+ -ions. These results agree with TRIM calculations that yield preferential ion-beam etching. It is concluded that the formation of Au-Al-O compound, which is responsible for the strong metal-ceramic bonding, is due to ion-induced cleaning and reduction of the sapphire surface, and the kinetic energy of depositing gold atoms, molecules, and micro-particles as a driving force for the inter-facial reaction.

  • PDF

리튬이온 배터리용 다층박판 금속의 초음파 용착시 용착강도 (Welding Strength in the Ultrasonic Welding of Multi-layer Metal Sheets for Lithium-Ion Batteries)

  • 김진범;서지원;박동삼
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.100-107
    • /
    • 2021
  • As a significant technology in the smartization era promoted by the Fourth Industrial Revolution, the secondary battery industry has recently attracted significant attention. The demand for lithium-ion batteries (LIBs), which exhibit excellent performance, is considerably increasing in different industrial fields. During the manufacturing process of LIBs, it is necessary to join the cathode and anode sheets with thicknesses of several tens of micrometers to lead taps of the cathode and anode with thicknesses of several hundreds of micrometers. Ultrasonic welding exhibits excellent bonding when bonded with very thin plates, such as negative and positive electrodes of LIBs, and dissimilar and highly conductive materials. In addition, ultrasonic welding has a small heat-affected zone. In LIBs, Cu is mainly used as the negative electrode sheet, whereas Cu or Ni is used as the negative electrode tab. In this study, one or two electrode sheets (t0.025 mm Cu) were welded to one lead tab (t0.1 mm Cu). The welding energy and pressure were used as welding parameters to determine the welding strength of the interface between two or three welded materials. Finally, the effects of these welding parameters on the welding strength were investigated.

35㎛ 점탄성수지가 적용된 1.035mm 제진강판의 이종소재간 저항점용접 특성분석 (Characteristic Analysis of Resistance Spot Welding between Dissimilar Materials of 1.035mm Laminated Vibration Damping Steel with 35㎛ Viscoelastic Resin)

  • 배기만;백종진;신창열;김승경;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.24-29
    • /
    • 2021
  • Recently, owing to the high demand for eco-friendly cars in the automotive industry, noise and vibrations have become major challenges. The use of laminated damping steel is increasing in response to these demands. Laminated damping steel is primarily used in sound insulation plates. The vibration energy is converted into thermal energy due to the viscoelastic resin being located between two steel sheets and being able to damp the vibrations when an external force, such as, noise or vibration is applied to the steel plate. Laminated damping steel is chiefly applied to dash panels in automotive body parts, and because of its structure, junction technology for bonding with other components is necessary. However, there has not been sufficient research conducted on junctions. In this study, regardless of the electrode shape, in the range of 4.0 ~ 8.0 kA welding current, the same welding force and welding time were applied which were 2.8 kN and 200 m/s (12 cycles) and the tensile shear load and nugget size were analyzed after the resistance spot welding between different materials of laminated damping steel with a thickness of 1.035 mm. The results show that in the range of 5 ~ 8 kA welding current, 1.035 mm laminated damping steel meets the MS181-15 standard, which is the technical standard of Hyundai-Kia Motors.

폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구 (Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling)

  • 류새희;박종하;이선영;이재성;이재철;안성훈;김대근;채재홍;류도형
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구 (The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303))

  • 이규용;오세규
    • 수산해양기술연구
    • /
    • 제17권2호
    • /
    • pp.93-103
    • /
    • 1981
  • Si-Cr계 내열강 SUH3와 Cr-Ni계 stainless강 SUS 303 및 이들이 마찰용접재 SUH3-SUS303을 $1,060^{\circ}C$에서 용체화처리하고 다시 $700^{\circ}C$에서 10, 100시간 시효열처리한 각 시험편의 고온 피로강도에 대한 시효열처리의 효과를 알기 위하여 $700^{\circ}C$에서 고온 회전굽힘 피로시험을 하고 파약거동을 미시적으로 관찰하여 다음과 같은 결과를 얻었다. 1) SUH3재와 SUS303재의 최적마찰용접조건은 회전수 2420rpm, 마찰가압력 $8kg/mm^2$, 전 upset량 7mm(마찰가압시간 3sec, upset시간 2sec)이었다. 2) $700^{\circ}C$ 고온에서 장시간 이루어지는 고온피로시험에 있어, 용체화처리재의 S-N 곡선 경사부의 기울기가 가장 급하게 나타났다. 3) SUH3-SUS303 마찰용접재는 $1,060^{\circ}C$에서 1시간용체화 처리하고, $700^{\circ}C$에서 시효처리하는 경우 최적시효시간은 10시간이었다. 4) 10시간 시료재의 고온피로한도는 모재보다 SUH3은 75.4%, SUS303은 28.5% 높았으며, 용접재 SUH3-SUS303은 44.2% 정도 높았다. 100시간 시효재는 모재보다 SUH3은 64.91% SUS303은 30.4% 높았으며, SUH3-SUS303은 30.4% 높았으며, SUH3-SUS303은 36.6% 높았다. 5) 마찰용접재의 상온 및 고온의 피로파단은 모두 SUS303의 모재측에 발생하였으며, 용접면에서의 파단은 전혀 없었다. 6) SUS303재와 마찰용접재 SUH3-SUS303재의 크랙은 입내파양형이었으나 SUH3은 입계크랙의 전파로 파양한다.

  • PDF