• Title/Summary/Keyword: Bonding force

Search Result 327, Processing Time 0.022 seconds

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF

Deformation Properties of Gold Bonding Wire for VLSI Packaging Applications (반도체 패키징용 Gold Bonding Wire의 변형특성 및 해석)

  • Kim K.;Hong S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.250-253
    • /
    • 2001
  • Mechanical properties of gold bonding wire for VLSI packaging have been studied. The diameters of gold wires are about 20-30 micrometer and fracture loads are 8-20 gram force. The elastic modulus, yield strength, fracture strength and elongation properties have been evaluated by micro-tensile test method. This work discusses for an appropriate selection of micro-force testing system and grip design in mim testing. The best method to determine gauge length of wire and to measure tensile properties has been proposed. The mechanical properties such as strength and elastic modulus of current gold bonding wire are higher than pure those of gold wire.

  • PDF

Glass to Metal Bonding by Electric Field (전장에 의한 유리와 금속의 접합)

  • 정우창;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.70-78
    • /
    • 1983
  • This paper discusses the application of Si-Borosilicate glass sealing to a new sealing method which utilizes a large electrostatic field to pormote bound formation at relatively low temperature. Bonding mechanism and the effect of bonding time bonding temperature glass thickness and surface roughness on the bond strength were investigated. Application of a de voltage across bonded specimen gradually produced a layer of glass adjacent silicon which was depleted of mobile ions. As a consequence a n increasingly larger fraction of the applied voltage appeared across the depleted region and very large electric field resulted This field accompanyed by large electrostatic force acted as driving force the of strong bond. And stronger bond was formed with increasing bonding time and temperature. A low temperature preoxidation is advantageous for the Si surface having a rougher surface finish that 1 microinch.

  • PDF

COMPARISON OF RETENTIVE FORCE OF REPAIR RESIN BY VARIOUS SURFACE TREATMENT METHODS IN THE REPAIR OF FRACTURED PORCELAIN FUSED TO METAL CROWN (도재소부전장관(陶材燒付前奬冠) 파절수리시(破折修理時) 표면처리(表面處理) 방법(方法)에 따른 수복(修復)레진의 유지력(維持力)에 관(關)한 연구(硏究))

  • Lim Heon-Song;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.73-83
    • /
    • 1992
  • Now composite resin restoration is clinically accepted in the repair of fractured PFM case, many mechanical surface treatment methods are performed to increase retentive force. The main purpose of this study was to compare the retentive force among the possible surface treatments and to insure the best method for the clinical application to the fractures porecelain and the exposed metal surface. To compare and to analyze the retentive force of repair resin, porcelain specimen were divided into 2 groups, etching group and non-etching group, and etching group were treated with 37% $H_3PO_4$, 1.23% APF, 10% HF and non-etching groups were treated with diamond bur, micro-sandblasasting. Also, metal specimens were divided by 2 groups : one was non-precious metal group which was treated with diamond bur, micro-sandblasting and tin plating and electrolytic etching, the other was precious metal group which was composed of micro-sandblasting treatment only and tin plating treatment with micro-sandblasting. Each specimen had been restored for 48 hours and the bond strength of each specimen was calculated with Universal testing machine. The results were as follows : 1. Porcelain specimen had higher bonding strength than metal specimen for the repair resin(P<0.01). 2. In porcelain specimen, 10% HF etching group had the highest bonding strength among etching and non-etching group. 3. Metal specimen treated with micro-sandblasting had highest bonding strength among the non-sandblasting had hightest bonding strength among the non-precious group, tin plating group had higher bonding strength than micro-sandblasting group between the precious metal groups. 4. Bonding strength of tin plating was increased in precious metal group only.

  • PDF

The Direct Bonding of Copper to Alumina by $Cu-Cu_2$O Eutectic Reaction (Cu-C$u_2$O의 공정반응에 의한 구리와 알루미나의 직접접합)

  • Yu, Hwan-Seong;Lee, Im-Yeol
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.241-247
    • /
    • 1992
  • The direct bonding of Cu to $Al_2O_3$, employing the $Cu-Cu_2$O eutectic skin melt, is investigated. The bonding force and interface structure of samples prepared by oxidation at $1015^{\circ}C$ in $1.5{\times}10^{-1}$torr followed by bonding at 107$5^{\circ}C$ under $10_{-3}$ torr vacuum have been studied using peeling test, SEM, EDS and XRD. It has been found that the optimal strength is obtained for 3 minutes of oxidation while the adhesion force is decreased with oxidation shorter or longer than 3 minutes. The rupture occured at alumina-eutectic interface. Fractured surface of $Al_2O_3$covered with $Cu_2$O nodules pulled out of the Cu indicates that bonding strength is governed by $Cu-Cu_2$O interface and not by $Cu_2$O-A$l_2O_3$interface. The bonding force is slightly increased with bonding time and the reaction phases of CuA$l_2O_4$and $CuAlO_2$are formed at interface during the bonding.

  • PDF

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Development of Packaging Technology for CdTe Multi-Energy X-ray Image Sensor (CdTe 멀티에너지 엑스선 영상센서 패키징 기술 개발)

  • Kwon, Youngman;Kim, Youngjo;Ryu, Cheolwoo;Son, Hyunhwa;Kim, Byoungwook;Kim, YoungJu;Choi, ByoungJung;Lee, YoungChoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.371-376
    • /
    • 2014
  • The process of flip-chip bump bonding, Au wire bonding and encapsulation were sucessfully developed and modularized. The CdTe sensor and ROIC were optimally jointed together at $150^{\circ}C$ and $270^{\circ}C$ respectively under24.5 N for 30s. To make SnAg bump on ROIC easy to be bonded, the higher bonding temperature was established than CdTe sensor's. In addition, the bonding pressure was lowered minimally because CdTe Sensor is easier to break than Si Sensor. CdTe multi-energy sensor module observed were no electrical failures in the joints using developed flip chip bump bonding and Au wire bonding process. As a result of measurement, shearing force was $2.45kgf/mm^2$ and, it is enough bonding force against threshold force, $2kgf/mm^2s$.

Study on the Bonding Pad Lift Failure in Wire Bonding (와이어 본딩시 본딩 패드 리프트 불량에 관한 연구)

  • 김경섭;장의구;신영의
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1079-1083
    • /
    • 1998
  • In this study, ultrasonic power of Aluminum wire bonder, bond time and bond force are investigated and valued in order to minimize failure of bonding pad lift. We also tried to control those 3 factors properly. We got the conclusion that if we turn down the ability of ultrasonic power or bond time, we can get a pad lift from a boundary between bond pad ad wire because pad metal and wire joining is unstable, but it is best condition when it ultrasonic power is 100∼130unit, bond time is 15∼20msec and bond force is 4∼6gf.

  • PDF

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method (이산요소법을 이용한 Graphite 분말 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Debonding forces of three different customized bases of a lingual bracket system

  • Sung, Jang-Won;Kwon, Tae-Yub;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • Objective: The purpose of this study was to investigate whether extension of the custom base is necessary for enhancement of bond strength, by comparing the debonding forces and residual adhesives of 3 different lingual bracket systems. Methods: A total of 42 extracted upper premolars were randomly divided into 3 groups of 14 each for bonding with brackets having (1) a conventional limited resin custom base; (2) an extended gold alloy custom base: Incognito${TM}$; and (3) an extended resin custom base: KommonBase${TM}$. The bonding area was measured by scanning the bracket bases with a 3-dimensional digital scanner. The debonding force was measured with an Instron universal testing machine, which applied an occlusogingival shear force. Results: The mean debonding forces were 60.83 N (standard deviation [SD] 10.12), 69.29 N (SD 9.59), and 104.35 N (SD17.84) for the limited resin custom base, extended gold alloy custom base, and extended resin custom base, respectively. The debonding force observed with the extended resin custom base was significantly different from that observed with the other bases. In addition, the adhesive remnant index was significantly higher with the extended gold alloy custom base. Conclusions: All 3 custom-base lingual brackets can withstand occlusal and orthodontic forces. We conclude that effective bonding of lingual brackets can be obtained without extension of the custom base.