• 제목/요약/키워드: Bonding adhesion layer

검색결과 77건 처리시간 0.023초

이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성 (Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound)

  • 강형대;김화진;이재흥;서동학;홍영택
    • 접착 및 계면
    • /
    • 제8권1호
    • /
    • pp.15-27
    • /
    • 2007
  • 폴리이미드 필름과 구리의 접착력을 향상시키기 위하여 이온빔과 실란-이미다졸 커플링제를 사용하여 폴리이미드 표면개질을 실시하였다. 실란-이미다졸 커플링제는 구리와의 배위결합을 형성하는 이미다졸 그룹과 실록산 폴리머를 형성하는 메톡시 실란 그룹을 함유한다. 폴리이미드 필름표면은 아르곤/산소 이온빔으로 일차로 처리하여 친수성을 높인 폴리이미드 필름에 커플링제 수용액에 침지하여 폴리이미드 필름 표면에 커플링제를 그라프트시켜 표면개질을 실시하였다. XPS 스펙트럼 분석결과 아르곤/산소 플라즈마 처리는 폴리이미드 표면에 하이드록시 및 카르보닐 그룹과 같은 산소 기능성기를 형성함을 알 수 있었고 폴리이미드 필름 표면에 실란-이미다졸과의 커플링반응에 의하여 표면이 개질되었음을 확인하였다. 이온빔을 사용하여 그라프트된 폴리이미드 필름과 구리와의 접착력은 처리되지 않은 폴리이미드 필름과의 접착력 보다 높은 접착력을 나타내었다. 또한 커플링제로 그라프트된 폴리이미드 필름의 접착력 보다 아르곤/산소의 양자화 이온을 이용하여 개질한 그라프트된 폴리이미드 필름의 시편이 더 높은 접착력을 나타내었다. 구리-폴리이미드 필름의 계면으로부터 박리된 층은 분석결과 완전히 서로 다른 화학적 조성을 나타내었는데 이것으로부터 박리가 접합면의 커플링제 내에서 일어나는 것보다는 폴리이미드와 커플링제의 사이에서 일어남을 확인하였다.

  • PDF

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • 센서학회지
    • /
    • 제21권6호
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

소비자 지향 3차원 헬멧제품 제작을 위한 UV레이저 기반의 폴리머/금속적층에 대한 기초연구 (A Fundamental Study on Polymer/Metal Additive Method using a UV Laser for Consumer-oriented 3D Helmet Products)

  • 강보석;안동규;신보성;신종국
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.89-94
    • /
    • 2016
  • Consumer orientation requires that companies understand consumer needs and produce products that meet their expectations. This study proposes a new additive method that creates a polymer/metal bonding layer and thus can lighten the weight of helmets to develop a consumer-oriented 3D printing helmet. The composite solution is experimentally prepared with copper formate and a photopolymer resin. Stereolithography apparatus and photothermal reactions are introduced to fabricate an adhesive hybrid layer of copper metal and polymer. A UV pulse laser with a 355 nm wavelength was installed to simplify this process. Resistance, adhesion, and accuracy were investigated to evaluate the properties of the layer produced.

Atomic Force Microscopy Study on Correlation between Electrical Transport and Nanomechanical properties of Graphene Layer

  • Kwon, Sang-Ku;Choi, Sung-Hyun;Chung, H.J.;Seo, S.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.85-85
    • /
    • 2010
  • Graphene, the building block of graphite, is one of the most promising materials due to their fascinating electronic transport properties. The pseudo-two-dimensional sp2 bonding in graphene layers yields one of the most effective solid lubricants. In this poster, we present the correlation between electrical and nanomechanical properties of graphene layer grown on Cu/Ni substrate with CVD (Chemical Vapor Deposition) method. The electrical (current and conductance) and nanomechanical (adhesion and friction) properties have been investigated by the combined apparatus of friction force microscopy/conductive probe atomic force microscopy (AFM). The experiment was carried out in a RHK AFM operating in ultrahigh vacuum using cantilevers with a conductive TiN coating. The current was measured as a function of the applied load between the AFM tip and the graphene layer. The contact area has been obtained with the continuum mechanical models. We will discuss the influence of mechanical deformation on the electrical transport mechanism on graphene layers.

  • PDF

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성 (Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process)

  • 주연아;조용훈;박재성;이기안
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성 (Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus)

  • 장상묵;김윤호;최성민
    • 한국건축시공학회지
    • /
    • 제14권2호
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Fabrication of Micro Conductor Pattern on Polymer Material by Laser Induced Surface Activation Technology

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.327-332
    • /
    • 2020
  • Laser induced surface activation (LISA) technology requires refined selection of process variables to fabricate conductive microcircuits on a general polymer material. Among the process variables, laser mode is one of the crucial factors to make a reliable conductor pattern. Here we compare the continuous wave (CW) laser mode with the pulse wave (PW) laser mode through determination of the surface roughness and circuit accuracy. In the CW laser mode, the surface roughness is pronounced during the implementation of the conductive circuit, which results in uneven plating. In the PW laser mode, the surface is relatively smooth and uniform, and the formed conductive circuit layer has few defects with excellent adhesion to the polymer material. As a result of a change of laser mode from CW to PW, the value of Ra of the polymer material decreases from 0.6 ㎛ to 0.2 ㎛; the value of Ra after the plating process decreases from 0.8 ㎛ to 0.4 ㎛, and a tight bonding force between the polymer source material and the conductive copper plating layer is achieved. In conclusion, this study shows that the PW laser process yields an excellent conductive circuit on a polymeric material.

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF