• 제목/요약/키워드: Bonding Pressure

검색결과 394건 처리시간 0.024초

VCR 헤드 제조시 $SiO_2$박막과 유리의 계면 결함 (Interfacial Defects in $SiO_2$-Glass Bond During VCR Head Fabrication)

  • 윤능구;황재웅;고경현;안재환;제해준;홍국선
    • 한국재료학회지
    • /
    • 제4권1호
    • /
    • pp.31-36
    • /
    • 1994
  • Mn-Zn ferrite를 가공하여 VCR헤드의 제조과정에서 비자성체 gap용 $SiO_{2}$증착층과 유리와의 접합시 유리내에 기포 형태의 결함이 발생하는 경우가 있다. 기판의 조도나 $SiO_{2}$의 증착속도의 영향을 분석한 결과, 기포의 생성원인이 $SiO_{2}$ 증착층과 접합유리의 융착시 계면에 존재하는 요철의 불완전한 충진에 의한 것으로 나타났다. 따라서 이러한 기포생성을 억제시키는 위해서는 기판을 최대한 경면 연마시켜 표면조도를 작게하고 $SiO_{2}$증착속도를 조절함으로써 $SiO_{2}$증착층의 표면조도를 작게하여 유리 융착시 계변의 요철 크기를 작게해야 한다. 기판을 0.05$\mu\textrm{m}$알루미나 분말로 경면연마시키고, 10% Osub 2/분압을 갖는 Ar plasma상태하로 조절된 증착속도로 즈악된 $SiO_{2}$증착층과 접합유리의 융착시 기포가 전혀 발생치 않았다.

  • PDF

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 열충격 특성에 미치는 다이아몬드 입자 비율의 영향 (Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC))

  • 김지원;박희섭;조진현;이기안
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.111-115
    • /
    • 2015
  • This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a $12{\sim}22{\mu}m$- and $8{\sim}16{\mu}m$-sized main particles, and $1{\sim}2{\mu}m$-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.

ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구 (A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module))

  • 정창규;백경욱
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.7-15
    • /
    • 2008
  • 본 논문에서는 ACF를 이용한 CCM용 COF 어셈블리의 실장 기술을 연구하고 COF 어셈블리의 신뢰성 분석을 수행하였다. 열팽창계수, 모듈러스, 유리전이온도 등 경화 후 ACF의 열-기계적 물성들을 분석하였으며, ACF의 경화거동 결과를 바탕으로 COF 접합공정 온도 및 시간을 최적화하였으며, 도전입자의 변형 관찰 및 전기적 접촉 저항 측정을 통해 본딩 압력에 대한 최적화를 수행하였다. 또한 ACF 물질 특성이 COF어셈블리의 신뢰성에 미치는 영향을 알아보기 위해 열-싸이클 시험, 고온 유지 시험, 고온고습 시험을 수행하였다. 신뢰성 시험 수행 후 ACF를 이용한 COF 어셈블리의 신뢰성에 가장문제가 되고 있는 점은 열-싸이클 신뢰성 시험에서 나타난 ACF joint의 접촉 저항 증가 문제였고, 이는 ACF 자체의 열-기계적 물성과 밀접한 관계가 있음을 확인하였다.

  • PDF

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them

  • Kobayashi, Yoshio;Nakazawa, Hiroaki;Maeda, Takafumi;Yasuda, Yusuke;Morita, Toshiaki
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.359-372
    • /
    • 2017
  • Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.

유리성형용 카본금형의 표면조도에 미치는 고출력 스퍼터링 조건의 영향 (The Effect of High Power Sputtering Conditions on Surface Roughness of Carbon Mold for Glass Forming )

  • 주성후;양재웅
    • 한국응용과학기술학회지
    • /
    • 제41권1호
    • /
    • pp.46-57
    • /
    • 2024
  • In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were -16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure (sp2 bonding) was more dominant than the DLC structure (sp3 bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.

폐목재(廢木材) 활용(活用)을 위한 플라즈마 처리(處理) 효과(效果)에 대한 연구(硏究) (A Study on Effect of Plasma Treatment for Waste Wood Application)

  • 김미미;임중연
    • 자원리싸이클링
    • /
    • 제22권2호
    • /
    • pp.18-21
    • /
    • 2013
  • 본 실험에서는 상압플라즈마에 의한 목분의 표면개질에 대해 조사하였다. 복합재는 목분과 폴리프로필렌을 이용하여 제작되었다(목분 : 폴리프로필렌=55wt% : 45wt%). 상압플라즈마는 carrier gas로 헬륨과 HMDSO를 모노머로 사용하였고 3 KV, $17{\pm}1$KHz, 2 g/min의 조건에서 처리하였다. 폐목분의 인장강도는 상압플라즈마 처리를 통해 18.5 MPa에서 21.2 MPa로 14.6% 증가하였고 단일수종목분의 경우에도 21.5 MPa에서 23.4 MPa로 8.8% 증가하였다. 이것으로 상압플라즈마 처리는 목분의 표면을 개질하여 폴리프로필렌과의 계면결합력을 증가시켜주는 것을 확인하였다.

금속의 두께가 도재의 파절강도에 미치는 영향 (A study on the difference of Ceramic fracture strength according to the metal depth)

  • 신무학;최운재;김용원
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

Morphological optimization of process parameters of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Manwatkar, Sushant Krunal;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.25-31
    • /
    • 2014
  • A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.

액상 이소프렌 고무가 자외선 경화형 아크릴 점착제의 점착 특성에 미치는 영향 (Effect of Liquid Isoprene Rubber on the Adhesion Property of UV Curable Acrylic Pressure-Sensitive Adhesive)

  • 이지예;정경호
    • Elastomers and Composites
    • /
    • 제49권3호
    • /
    • pp.210-219
    • /
    • 2014
  • 본 연구에서는 아크릴계 점착제를 합성한 후 이소프렌 액상고무를 블렌드하여 광기능성 시트에 적용될 점착제를 제조하였다. 아크릴 점착제의 모노머로는 butyl acrylate, acrylic acid, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate를 사용하였고 용매로는 톨루엔을 사용하였다. 고무계 모노머로는 isoprene 액상고무(LIR-50)를 사용하였고, 아크릴 점착제와의 배합량을 0 ~ 50 wt%로 하여 실험을 진행하였다. 결과에 따르면 LIR-50의 함량이 증가할수록 아크릴계 점착제의 최대 단점이었던 전사현상이 감소하였다. 그 이유는 이소프렌 액상고무의 경우 아크릴 점착제와 달리 극성기가 존재하지 않기 때문에 피착재와 이차결합이 발생하지 않아 경시변화에 따른 전사현상이 감소한 것으로 사료된다. 점착제의 자외선 경화 시 광개시제의 함량이 증가함에 따라, UV에 노출되는 시간이 증가함에 따라 점착제의 경화도가 높아지기 때문에 점착력과 전사현상이 감소하였다. 반면 유지력의 경우는 경화도가 증가하여 분자구조가 망상구조를 이루며 점착제 내부응집력이 증가하기 때문에 유지력은 증가하였다.

UV 경화형 복합재료의 진공압에 따른 기계적 경화 특성 분석 (Analysis of Mechanical Curing Properties Based on Vacuum Pressure of UV-Cured Composites)

  • 장용수;김정근;고선호;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, a UV-cured GFRP molding is made using a combination of hand lay-up and resin transfer molding, and its properties are analyzed. The molded plates produced using various vacuum pressures (0 mmHg, -450 mmHg, and -760 mmHg) are examined via a comparison of hand lay-up molding and resin transfer molding. Tests are conducted by processing tensile specimens (ASTM D-5083), flexural test specimens (ASTM D-790), and ILSS test specimens (ASTM D-2344) according to each ASTM standard with a molded plate. Similarly, the UV-cured GFRP molding is compared against GFRP using epoxy. It was confirmed that the mechanical strengths of all the specimens increased when the vacuum pressure was increased and when UV curing was applied. This is believed to be because as the vacuum pressure increases, the pores of the cured specimen are removed, thereby reducing defects, and the bonding force between the glass fiber and the resin is stronger than that of the epoxy resin. It is expected that if resin transfer molding methods and UV-cured resins are used for molding GFRP composites in industry, products with better mechanical properties and faster curing time will be produced.