• Title/Summary/Keyword: Bonding Mortar

Search Result 70, Processing Time 0.025 seconds

Performance Evaluation of Sprayed Ductile Fiber-Reinforced Mortar as a Repairing Material

  • Kang, Su-Tae;Koh, Kyung-Taek;Ryu, Gum-Sung;Kim, Jin-Soo;Han, Cheon-Goo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • Most of existing repair materials have some shortcomings such as brittle fracture, imperfect interface bonding and marked difference in modulus of elasticity compared with the structures. These problems make their repair inefficient. Some researches on using a fiber-reinforced mortar as an alternative to enhance the efficiency have been carried out recently. This paper presents the results of an experimental study on the performance of sprayed PVA fiber-reinforced mortar as a repair material. We evaluated its mechanical properties, durability and strengthening effect. This study shows that the sprayed PVA fiber-reinforced mortar is remarkably effective as a repair material.

Synthesis of catechol-conjugated chitosan and its application as ana dditive for cement mortar (카테콜 작용기를 함유한 키토산 고분자 혼입율에 따른 시멘트 모르타르의 특성 변화)

  • Choi, Hoe Young;Choi, Se-Jin;Ko, Haye Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.255-256
    • /
    • 2022
  • We synthesized catechol-conjugated chitosan (CCC) to study its usefulness as a construction material additive in cement mortar. The degree of catechol conju-gation (DOCcat) of the synthesized CCC was determined to be approximately14% by UV-vis and 1H NMR spectroscopy. Furthermore, the hydroxyl and amine groups in CCC could play a crucial role in hydrogen bonding, metal coordination, and cross-linking processes via interaction with adducts from cement mortar. In this study, we observedanimprovement in the compressive strength and absorption rate, suggesting that CCC is a promising candidateforhigh-performance cement mortar.

  • PDF

Evaluation on the Properties and Interfacial Bonding Form of Mortar Mixed with Waste Shells (패각류를 혼입한 모르터의 기초물성 평가 및 계면 결합상태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.208-209
    • /
    • 2014
  • Recently, many environmental problems occur due to the waste shells in South Korea. In case of oyster and cockle, utilizing waste shells to produce fertilizer once also, but due to sluggish consumption, production is no longer difficult. The stored amount of waste shells in the fertilizer manufacturing company is overfilled, and thus cannot accept any more of the waste shells. As a result, landfill and dumping of waste shells have become an increasingly environmental problems. In this research, the basic physical properties and interfacial bonding form of the mortar mixed with waste shells (manila clam, cockle, clam, sea mussel, oyster) were evaluated.

  • PDF

An Experimental study on the Mechanical Performance of High-Strength Self-Leveling Mortar according to Polymer Mixing Ratio (폴리머 혼입률에 따른 고강도 자기 수평 모르타르의 역학적 성능에 대한 실험적 연구)

  • Jeong, Min-Goo;Cho, In-Sung;Kim, In-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.21-22
    • /
    • 2020
  • This study is about high strength self-leveling mortar according to the mixing ratio of polymer. The self-leveling mortar currently released in Korea maintains a compressive strength of 40 Mpa as of 28 days. In addition, the level of bonding strength and flexural strength are kept the same. However, through this study, it is confirmed how the self-leveling mortar with a compressive strength of 60Mpa as of the 28th is shown according to the amount of polymer mixed. Experimental factors were configured according to the amount of polymer mixed, and the types of experiments were to confirm compressive strength, flexural strength, adhesion strength and flow. In addition, by confirming the early strength, a study was conducted to improve the quick workability compared to the self-horizontal mortar in the market.

  • PDF

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

Bonding Properties of PMMA Mortars Using EPS with Silane Coupling Agent (실란 커플링제를 첨가한 발포폴리스티렌 혼입 폴리메타크릴산 메틸 모르타르의 부착특성)

  • Lee, Chol-Woong;Mun, Kyoung-Ju;Choi, Nak-Woon;Jeon, Seong-Hwan;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.301-304
    • /
    • 2006
  • The purpose of this study is to evaluate bonding properties of PMMA mortars using EPS with silane coupling agent. PMMA mortars are prepared with various silane coupling agent, and tested for flexural strength test, adhesion test in flexure and tensile strength in underwater and air. It is estimated that the application of silane coupling agent to PMMA mortar is more effective in underwater than air.

  • PDF

Development of Repair System for Drain Pipe to Enhance Safety (하수관거 안전성 향상을 위한 보수 시스템 개발)

  • Chung, Jee-Seung;Kang, Weon-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.45-53
    • /
    • 2011
  • This study was performed to develop repair and reinforcing materials in sewage drain pipe by using 40% of CAC(Calcium Aluminate Cement) and 4% of Polymer Powder. Regarding reinforcing materials to enhance load-bearing capacity, polyester textile and wire mesh were adopted and then they were evaluated by the measurement of deflection and Stress-strain Relationship. Two types of drain pipe made by concrete and PE were considered as plain specimens and then loading test were performed after repaired by CAC mortar impregnated reinforcing materials. As the test results of the load-bearing test on both drain pipe, there was higher load-bearing capacity on the specimen adopted wire mesh but debonding of repair mortar was found due to stiffness of wire mesh. By the way, repair system using CAC mortar impregnated polyster textile without wire mesh showed satisfactory results including bonding and load-bearing capacity regardless substrate, so this repair system using by mixture of CAC mortar and polyster textile is suggested as the reasonable repairing method within this experimental scope.

Compressive Strength and Water Contact Angle Properties of Cement Mortar by Type of Water Repellent (발수제종류별 잔골재 입도에 따른 시멘트 모르타르의 강도 및 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Suh, Jeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.529-538
    • /
    • 2021
  • In this study, the compressive strength and water contact angle were measured before and after surface abrasion of mortar specimens prepared by mixing two types of water repellents and two types of sands. In addition, the hydration products and chemical bonding of cement mortar by repellent were examined using X-ray diffraction(XRD), thermogravimetry-differential thermal analysis(TG-DTA), and Fourier-transform infrared spectroscopy(FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the compressive strength of the cement mortar with water repellent added was decreased compared to that of the plain cement mortar, and that of the oligomeric system was higher than that of the monomeric system. We further found that the contact angle of mortar with water repellent added was increased compared to that of the plain cement mortar, and that of the oligomeric system was increased compared to that of the monomer.

Evaluation of Shrinkage Properties of Tiles Reinforced with Epoxy Resin Adhesive (에폭시 수지 접착제를 보강한 타일의 수축특성 평가)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Eui-Chul;Son, Min-Jae;Lee, Sang-yun;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.163-164
    • /
    • 2020
  • The purpose of this study was to evaluate the shrinkage properties of a tile reinforced with epoxy resin, which has the advantages of high adhesion and low shrinkage, and causes a hardening reaction by chemical bonding with cement mortar. As a result, since the epoxy resin adhesive suppresses the moisture evaporation of the mortar, the drying shrinkage of the mortar itself is reduced, accordingly, the shrinkage of the tile itself is greatly reduced, and it is thought that it is possible to prevent a decrease in adhesion due to shear stress.

  • PDF

Pinning retrofit technique in masonry with application of polymer-cement pastes as bonding agents

  • Shrestha, Kshitij C.;Pareek, Sanjay;Suzuki, Yusuke;Araki, Yoshikazu
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.477-497
    • /
    • 2013
  • This paper reports extensive experimental study done to compare workability and bond strength of five different types of polymer-based bonding agents for reinforcing bars in pinning retrofit. In pinning retrofit, steel pins of 6 to 10 mm diameters are inserted into holes drilled diagonally from mortar joints. This technique is superior to other techniques especially in retrofitting historic masonry constructions because it does not change the appearance of constructions. With an ordinary cement paste as bonding agent, it is very difficult to insert reinforcing bars at larger open times due to poor workability and very thin clearance available. Here, open time represents the time interval between the injection of bonding agent and the insertion of reinforcing bars. Use of polymer-cement paste (PCP), as bonding agent, is proposed in this study, with investigation on workability and bond strengths of various PCPs in brick masonry, at open times up to 10 minutes, which is unavoidable in practice. Corresponding nonlinear finite element models are developed to simulate the experimental observations. From the experimental and analytical study, the Styrene-Butadiene Rubber polymer-cement paste (SBR-PCP) with prior pretreatments of drilled holes showed strong bond with minimum strength variation at larger open times.