• Title/Summary/Keyword: Bonded dissimilar components

Search Result 7, Processing Time 0.02 seconds

Measurement of Interfacial Crack Length by Ultrasonic Scattering Compensation Depending on Thickness Variations of Bonded Dissimilar Components (이종 접합부재의 두께 변화에 따른 초음파 산란 보정에 의한 계면균열 길이의 측정)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.67-75
    • /
    • 2006
  • In this paper, the compensation of ultrasonic scattering on interface crack depending on thickness variations of A1/Epoxy bonded dissimilar components was applied to improve measuring accuracy by using ultrasonic attenuation coefficient. The optimum conditions of theoretical value and experimental measuring accuracy by the ultrasonic method in A1/Epoxy bonded dissimilar components have been investigated. From the experimental results, the measurement method of interfacial crack lengths by using ultrasonic attenuation coefficient was proposed and discussed. After the ultrasonic scattering compensation depending on thickness variations of bonded dissimilar components was carried out, the measuring accuracy of interfacial crack length was improved by 5%.

Ultrasonic Scatter and Compensation of Interfacial Crack due to Thickness Variation of Dissimilar Bonded Components (이종 접합부재의 두께 변화에 따른 계면균열의 초음파 산란 보정)

  • Park, Sung-Il;Chung, Nam-Yong;Jin, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.25-30
    • /
    • 2004
  • In this paper, the compensation of interfacial scatter due to adhesive layer and adherend thickness ratio variation was applied to improve measuring precision by calculating ultrasonic attenuation coefficient in the Al/Epoxy dissimilar bonded components. The optimum condition of theoretical value and experimental measuring accuracy by the ultrasonic method in the Al/Epoxy dissimilar bonded components have been investigated. From the experimental results, we proposed a measurement method of the interfacial crack lengths by the ultrasonic attenuation coefficient and discussed it.

  • PDF

EFFECTS OF INTERFACE CRACKS EMANATING FROM A CIRCULAR HOLE ON STRESS INTENSITY FACTORS IN BONDED DISSIMILAR MATERIALS

  • CHUNG N.-Y.;SONG C.-H
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.293-303
    • /
    • 2005
  • Bonded dissimilar materials are being increasingly used in automobiles, aircraft, rolling stocks, electronic devices and engineering structures. Bonded dissimilar materials have several material advantages over homogeneous materials such as high strength, high reliability, light weight and vibration reduction. Due to their increased use it is necessary to understand how these materials behave under stress conditions. One important area is the analysis of the stress intensity factors for interface cracks emanating from circular holes in bonded dissimilar materials. In this study, the bonded scarf joint is selected for analysis using a model which has comprehensive mixed-mode components. The stress intensity factors were determined by using the boundary element method (BEM) on the interface cracks. Variations of scarf angles and crack lengths emanating from a centered circular hole and an edged semicircular hole in the Al/Epoxy bonded scarf joints of dissimilar materials are computed. From these results, the stress intensity factor calculations are verified. In addition, the relationship between scarf angle variation and the effect by crack length and holes are discussed.

Characteristics of Ultrasonic Test on Interfaces of Adhesively Bonded Components (접착부재의 계면에 대한 초음파 탐상 특성)

  • 정남용;박성일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.182-189
    • /
    • 2004
  • The application of adhesively bonded components is increasing in various industries such as automobile, aircraft, IC packages, and soldering techniques. In spite of such wide application in adhesively bonded components, nondestructive test techniques applying to adhesively bonded components have not been clearly established yet. In this paper, characteristics of ultrasonic test on interfaces of adhesively bonded components have been investigated by calculating transmission coefficient theoretically and experimentally. From the experimental results, the optimum conditions to establish frequencies for adhesively bonded homogeneous and dissimilar components are 4∼6 MHz and 2∼4 MHz, respectively.

Evaluation of Fracture Toughness on Interface Cracks in Bonded Components of Dissimilar Materials (이종 접합부재의 계면균열 파괴인성의 평가)

  • Chung, Nam-Yong;Lee, Myung-Dae;Park, Chul-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.346-351
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded components of dissimilar materials has been proposed and discussed.

  • PDF

A Study on the Near-Field Stresses and Displacement of a Stationary Interfacial Crack in Two Dissimilar Isotropic Bimaterials (두 상이한 등방성 이종재료 정지계면균열의 선단 응력장과 변위장에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1897-1905
    • /
    • 2004
  • In many part of machines or structures that made of bimaterial bonded with two dissimilar materials, most failures occur at their interface. Therefore, the accurate analysis of fracture characteristics and the evaluation of mechanical strength for interfacial crack are essential when we design those structures. In this research, stress and displacement components in the vicinity of stationary interfacial crack tip in the two dissimilar isotropic bimaterials are established. Hereafter, the stress components established in this research can be applied to the photoelastic hybrid method which can be used to analyze the fracture behavior of the two dissimilar isotropic bimaterials.

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.