• Title/Summary/Keyword: Bond-lengths and bond angles

Search Result 34, Processing Time 0.026 seconds

The Crystal and Molecular Structure of 1-(3-Chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (Ornidazole), $C_7H_{10}CIN_3O_3$

  • 신현소;송현;김의성;정광보
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.912-915
    • /
    • 1995
  • Ornidazole, C7H10ClN3O3, crystallizes in the triclinic, space group P1^, with a=13.605(2), b=14.054(1), c=8.913(5) Å, α=71.59(2), β=78.73(2), γ=64.86(1)°, μ=3.26 cm-1, Dc=1.499 g/cm3, Dm=1.497g/cm3, F(000)=684, and z=6. Intensities for 2693 unique reflections were measured on a CAD4 diffractometer with graphite-monochromated Mo-Kα radiation. The structure was solved by direct method and refined by block-diagonal least squares to a final R of 0.081 (Rw=0.047) for 1952 reflections with Fo>3σ (Fo). The asymmetric unit contains three independent molecules of the title compound. The bond lengths and bond angles are comparable with the values found in the other nitro-substituted compounds. The nitro groups are rotated (6.9°, 6.6°, 2.6° for the three independent molecule, respectively) about the C-N axes from the imidazole planes. The crystal structures are linked by two intermolecular hydrogen bonds of O-H---N type and one intermolecular hydrogen bond of O-H---O type.

Conformation of Antiimflammatory Fenamates (소염진통성 페나메이트 유도체들의 형태분석)

  • Chung, Uoo-Tae;Kang, Kee-Long;Lee, Sung-Hee
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.632-639
    • /
    • 1996
  • Most stable conformers of some antiinflammatory fenamates were obtained by conformational free energy change calculations. Conformational energies for the molecules as unhydrate d state were estimated first, and those as hydrated state were calculated then to simulate the molecules in aqueous solution using a hydration shell model. The initial geometries of the molecules were obtained either from X-ray crystallographic data or from homologous molecular fragments. The bond lengths and angles were not varied, but all the torsion angles were varied step by step during the conformational free energy surface searching. The results show that there are several feasible conformations for a compound. And the molecules are somewhat stabilized by hydration (-${\delta}G_{hyd}{\cong}$13 to 16kcal/mole), but the conformations were not changed significantly by the hydration itself. There seems to be a strong tendency of intramolecular hydrogen bonding between imino hydrogen and carboxyl oxygen of the compounds. As a result, the carboxyl group cannot be rotated freely, and the rotation of the second aromatic ring is the main reason for the conformational variations of the compounds. The ECEPP force fields via the program CONBIO were used throughout this study.

  • PDF

Application of Molecular Mechanics to the Structure of 1,6-Anhydropyranoses (1,6-Anhydropyranose의 분자구조의 역학적응용)

  • George A. Jeffrey;Young Ja Park
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.206-209
    • /
    • 1979
  • Empirical force-field calculations have been applied to eight 1,6-anhydropyra-noses, the crystal structures$^{13{\sim}21}$ of which have been studied by single crystal X-ray or neutron diffraction analysis. The theoretical calculations reproduce closely the variations in conformation between $^1C_4$ and $E_0$, which are observed in the pyranose rings. The smaller conformational differences in the five-membered anhydro ring are not so well predicted. The calculated C-C bond lengths agree with those observed within 0.012${\AA}$ with one exception. The C-O bond lengths show a larger deviation, 0.027${\AA}$. The non-hydrogen atom valence angles agree within 1.9$^{\circ}$.

  • PDF

Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers

  • Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2861-2866
    • /
    • 2012
  • Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide.

Monte Carlo Simulation on the Adsorption Properties of Ethane and Propane in Zeolite L (제올라이트 L 중 에탄과 프로판의 흡착성질에 대한 몬테칼로 시뮬레이션)

  • Moon, Sung Doo;Choi, Dai Ung;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 1998
  • The adsorption of ethane and propane in $K^{+}$ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. $CH_3$ and $CH_2$ groups of sorbate molecule were considered as pseudoatoms in calculation of potential, and the bond lengths and bond angles within a molecule were fixed during simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. For ethane the simulation results agreed considerably well with experimental ones over a wide range of temperature. The average potential of sorbate molecule decreased slowly with the increase of amounts sorbed in zeolite.

  • PDF

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

Crystallographic and Magnetic Properties of Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0) (Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0)의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun;Yang, Ju-Il;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Crystallographic and magnetic properties for Brownmillerite-type oxides $Ca_{1-x}$Sr$_{x}$FeO$_{2.5}$ (x = 0, 0.3, 0.5, 0.7, 1.0) were investigated using x-ray diffraction (XRD) and Mossbauer spectroscopy. Polycrystalline samples were prepared by conventional solid-state reaction method. Information on exact crystalline structures, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles using a Rietveld method. The crystal structures were found to be all orthorhombic with space group Icmm (x = 0, 0.3) and Icmm (x = 0.5, 0.7, 1.0) The lattice parameters increased monotonically with increasing Sr concentration. Both the tetrahedral and the octahedral sites were considerably distorted and elongated along b-axis. While bond lengths and bond angles O-Fe-O tend to increase minutely with the increase of Sr content, bond angles Fe-O-Fe decreased accordingly. The Mossbauer spectra showed two sets of sharp sextets originating from ferric ions occupying the tetrahedral and the octahedral sites under the magnetic transition temperature T$_{N}$. Regardless of the compositions x, the electric quadrupole splittings were -0.3 mm/s and 0.4 mm/s for the octahedral and the tetrahedral site, respectively. Above T$_{N}$, the Mossbauer spectra showed the paramagnetic doublets whose electric quadrupole splittings were about 1.6 mm/s, irrespective of compositions x. T$_{N}$ was found to decrease monotonically with the increase of Sr concentration. Ratios of absorption area for the two sites were almost 1:1 up to as high as 0.95 T$_{N}$ for all x. The result of the Debye temperature indicated that the inter-atomic binding force for the Fe atoms in the tetrahedral site was stronger than that for the octahedral site.hedral site.

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.

Studies on the Crystal Structure of Magnesite (마그네사이트 (MgCO$_3$)의 결정구조에 관한 연구)

  • 오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.3
    • /
    • pp.8-12
    • /
    • 1975
  • The crystal structure of synthetic magnesite has been studied by X-ray method. Magnesite is trigonal R3c, with a=4.637$\AA$, c=15.023$\AA$ and Z=6. Intensity data were collected with a Rigaku automated four-circle diffractometer and Mo-K$\alpha$ radiation. The structure was refined by the full-matrix least squares method using anisotropic thermal parameters. The final R index for 234 reflections is 0.037. The C-O and Mg-O bond lengths were 1.283 and 2.105$\AA$, respectively. The interatomic angles of three kinds of O-Mg-O were 88.25, 91.75 and 180.00$^{\circ}$, respectively. It is clarified that the distortion of the Mg-O6 octahedron in magnesite is smaller than that of Ca-O6 in calcite.

  • PDF

Simulation of 3QMAS NMR Spectra for Mordenite with the Point Charge Model

  • chae, Seen-Ae;Han, Oc-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • $^{27}AI$ triple quantum magic angle spinning (3QMAS) NMR spectra of several mordenite (MOR) sample were simulated with the point charge model method and compared with experimental 3QMAS spectra. Signal positions from different tetrahedral (T) sites in 3QMAS spectra are mainly governed by local structures of T sites such as T-O-T angles and T-O bond lengths. When preparation methods, cations in addition to Si/Al rations vary, the local structures of T sites in MOR change enough to alter signal patterns in 3QMAS of MOR. This inhibits to study the of Al distribution variation over 4 different T sites in mordenite during process such as dealumination by 3QMAS spectra.

  • PDF