• Title/Summary/Keyword: Bond water ratio

Search Result 78, Processing Time 0.03 seconds

An Experimental Study on Compressive Strength of Lightweight Concrete made of Polystyrene Foam Balls (Polystyrene Beads를 이용한 경량콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Recently, the study on mix design of lightweight concrete using the polystyrene foam balls is put into practice from the viewpoint to grade up the quality of concrete and recyclable usage of industrial by products. Polystyrene aggregate concrete, PAC, can be used as structural concrete in low strength application. For instance, PAC could be used in the middle part of sandwich panel where stresses are generally low and in the case of grid-type reinforcement where it does not need high bond strength but little compressive strength to resist the pressure of transverse reinforcement. From this point of view, the authors discussed the influence of fluidity and compressive strength of concrete by the difference of the volume percentage of polystyrene foam balls and water cement ratio.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

Durable Flame-Retardant Finish of Cotton Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용해성 사이클로포스파젠 유도체를 이용한 면섬유의 내구성 방염가공)

  • Kim, Jeong-Hwan;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Large amount of formaldehyde could be released inevitably during the flame-retardant (FR) treatments or from the finished fabrics using Provatex reagent and Proban polymers which have been used as durable FRs for cotton. A water-soluble cyclophosphazene derivative was synthesized as an ecofriendly phosphorus-based FR for cotton fibers. Dichloro tetrakis{N-[3-(Dimethylamino)propyl]methacrylamido} cyclcophosphazene (DCTDCP) was synthesized through the substiutution reaction of Hexachloro cyclophosphazene and N-[3-(Dimethylamino)propyl] methacrylamide at a mole ratio of 1 : 4, which can be cured dually by both alkaline treatment and UV irradiation. More crosslinked networks were produced through the addition of Triacryloyl hexahydrotriazine and Acrylamide as a UV-curable crosslinker and a comonomer respectively. Both flame retardancy and washing durability of the FR cotton were improved synergistically. The durability improvement may be caused by the covalent bond formation of the FR with cellulose and the high degree of polymerization of DCTDCP, which can be verified by the pyrolysis and combustion behaviors analyzed by LOI, TGA, and microcalorimeter.

A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 -)

  • Kim, Yu-Jung;Shibusawa, Tatsuya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • To develop the technology of producing structural board from low grade materials, an attempt was made to produce strand/particle composites from split wood strand(S) and particle(P) of (Cryptomeria japonica D. Don), which changed the layer construction and the ratio of S/P. The influence of layer construction on board properties was determined, focusing on the number and alignment of the S layers. The effect of weight ratio of S/P (3:7, 1:1, 7:3) on mechanical properties was also discussed on seven layered panel. Mechanical properties were determined from static bending tests to give parallel and perpendicular modulus of rupture (MOR) and modulus of elasticity (MOE), and the internal bond (IB) strength. In general, the surface strand layers contributed to the MOR and MOE. The parallel MOR and MOE values were the largest for the single layered S panel (only Slayers: S1), but the perpendicular MOR and MOE was the smallest. Perpendicular MOR and MOE were the largest for seven layered composite that had two cross oriented strand layers (SPSPSPS: SP7). Specimens retained more than half of their MOE and MOR after two hours in boiling water and one hour soaking. IB was the largest for the panel having only P layers, however, differences in IB strength were not identified among the other multi-layered composite panels thus the effect of layer construction on IB strength was small. Thickness swelling (TS) and surface roughness were smaller for the composite having P layers on the surface than for those having S layers. The addition of strands did not enhance the mechanical properties (MOR, MOE, IB). TS values for the panels, with which the S/P ratio was over than 1:1, was the similar to the value for the single layered S panels.

  • PDF

Characteristics of Silicon Rich Oxide by PECVD (PECVD에 의한 Sirich 산화막의 특성)

  • Gang, Seon-Hwa;Lee, Sang-Gyu;Park, Hong-Rak;Go, Cheol-Gi;Choe, Su-Han
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.459-465
    • /
    • 1993
  • By making the inter-metal PECVD $SiO_2$ as a Si rich oxide under the SOG, the hydrogen and water related diffusants could be captured a t SI dangling bonds. This gettering process was known to prevent the device characteristics degradations related to the H, $H_20$. The basic characteristics of Si rich oxide have been studied according to changing high/low frequency power and $SiH_4/N_2O$ gas flow ratio in PECVD. As increase in low frequency power, deposition rate decreased but K.I. and compressive stress increased. Decrease of the water peaks of FTIR spectra at the wave number range of 3300~3800$\textrm{cm}^{-1}$' also indicated that intensty the films were densified. As increase in SiH, gas flow rate, deposition rate, R.I. and etch rate increased while compressive stress decreased. F'TIK spectra showed that peak intensity corresponding to Si-0-Si stretching vibration decreased and shifted to the lower wave numbers. But AES showed that Si dangl~ng bonds were increased as a result of lower Si:O(l: 1.23) ratlo inthe Si rich oxide as compared to Si : O(1 : 1.98) ratio of usual oxide.

  • PDF

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Fresh and Hardened Properties of Structural Lightweight Concrete according to the Physical Properties of Artificial Lightweight Aggregates (인공경량골재의 물리적 특성에 따른 구조용 경량콘크리트의 프레쉬 및 경화성상)

  • Shin, Jae-Kyung;Choi, Jin-Man;Jeong, Yong;Kim, Yang-Bea;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.377-380
    • /
    • 2008
  • Structural lightweight concrete will reduced total loads of supporting sections and foundations in archtectural and civil structures. So, the lightweight concrete can use widely for various purpose in the archtectural and civil structures. However, the performance of lightweight concrete is essentially dependent of properties of used lightweight aggregates. So, in this paper were examined the fresh and hardened properties of lightweight concrete that are used 3types of the differences properties of lightweight aggregates from lower water-ratio to higher water-ratio of concrete mixing regions. Lightweight concrete was somewhat exhibit larger slump loss than ordinary concrete. Also, the development of compressive strength was lower than ordinary concrete, however it was not showed a marked difference. According to types of lightweight aggregates, the case of synthetic lightweight aggregate are highest performance in fresh and hardened concrete, but it is should be to evaluate the structural performance testing as anchoring and bond strength with reinforcing steel bars.

  • PDF

Evaluation of Characteristics of Ground Anchor Using Large Scale Laboratory Test (실규모 실험을 이용한 그라운드 앵커의 거동 특성 평가)

  • Sangrae Lee;Seunghwan Seol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.19-24
    • /
    • 2023
  • Ground anchor has been widely used specially for maintaining stability on reinforced cut slope in expressway. While the durability of the ground anchors should be ensured over the service life. However, the long-term loss of tensile force has occurred in most of field-installed anchors. Main causes are not clearly identified and very few studies have been made for analyzing long-term behavior of ground anchor in slopes. In this study, full-scale model tests and long-term measurements were made to obtain the load-displacement data and identified the causes of the long-term behaviors of ground anchor. As a result, the bond strength decreases exponentially with increasing water-binder ratio. Especially, groundwater is the most influencing factor to the bond strength. In the long-term behavior, the load decreases sharply until the initial settlement stabilized, and thereafter the tension force decreases constantly.