• Title/Summary/Keyword: Bond strengths

Search Result 482, Processing Time 0.026 seconds

A STUDY ON THE TENSILE BOND STRENGTH OF ETCHED BASE METALS (식각된 비 귀금속 합금과 법랑질간의 접착 인장강도에 대한 연구)

  • Park, Sang-Won;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.303-316
    • /
    • 1987
  • The purpose f this study was to evaluate the effect of resin film thickness on the tensile bond strength and to compare the tensile bond strengths of 4 differently treated metal surfaces. For the experiment, seventy metal specimens were cast with Verabond and divided into I, II, III, groups. The metal specimens in group I were electrolytically etched and cemented with Panavia under finger pressure. Cement film thickness was regulated with metal spacers. The metal specimens in Group II were treated by 4 methods, such as electrolytic etching method, salt-roughened method, EZ-oxisor method , chemical etching method and cemented with Panavia. In group III, electrolytically etched metal specimens were cemented with Hy-Bond. The etched surface of metal specimens and the cement film thickness were examined under the scanning electron microscope. Results were as follows; 1. The tensile bond strength showed no significant difference between $30{\mu}m,\;80{\mu}m,\;130{\mu}m$ film thicknessspecimens. 2. There was no significant difference in the tensile bond strength between the 4 differently treated metal specimens. 3. The tensile bond strength showed significant difference between Panavia and Hy-Bond. 4. Scanning electron microscope photograph revealed that tile interdendritic eutectic was removed in electrolytically etched metal surfaces hilt even dendritic arm was removed in Chemically etched metal surfaces. 5. The metal surfaces which were air-abraded with $50{\mu}m$ aluminum oxide showed roughness and small crack on scanning electron microscope photograph.

  • PDF

THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF THE RESIN TO TYPE IV GOLD ALLOY (금속면의 표면처리 방법에 따른 금합금과 전장레진간의 전단결합강도에 관한 연구)

  • Park, Dong-Won;Lim, Ho-Nam;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.685-692
    • /
    • 1995
  • The effect of five different surface treatments on the shear bond strength of the resin bond to Type IV Gold alloy was studied by bonding resin to metal. The metal surface was subjected to one of the following treatments and bonded ;(1) air abraded with $50{\mu}m$ alumina particles,(2) beads(3) beads and tin-plated at curreant density of 300mA/$cm^2$,(4) tin-plated at current density of 300mA/$cm^2$,(5) silicacoating with sililink, and bonded with an MDP Opaque primer, CESEAD resin system. The bonded specimens were immersed in water for 23 hours after 1 hour resin curing and shear bond strength were recorded. On the basis of this study, the following conclusions can be drawn; 1. Difference were found in the shear bond strength among all experimental groups. And bead glroup exihibited the highest shear bond strength and sand blasting group exhibited the lowest shear bond strength on five groups. 2. Bead group, mechanical bonding was significantly higher than that obtained with the samples, tinplating, silicacoating, and chemical bonding. 3. No statistically signiflcant difference was found between the shear bond strengths obtained with bead and bead-tinplating, and between tinplating and sili cacoating.

  • PDF

A STUDY ON THE BOND STRENGTH BETWEEN REUSED DENTAL ALLOYS AND PORCELAIN (치과 도재용 금속의 재사용에 따른 금속과 도재간의 결합 강도에 관한 연구)

  • Kim, In;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.181-190
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of shear bond strength between various percentage of reused dental ceramic alloys and porcelain. One hundred specimens were made of one semiprecious alloy and three nonprecious alloys. Each alloy group was subdevided into five groups according to the additional precentage of new alloy. Group I specimens were made of 100% new alloy and served as the control of the investigation. Group II specimens were made of once-cast alloy with 75% new alloy. Group III specimens were made of once-cast alloy with 50% new alloy. Group IV specimens were made of once-cast alloy with 25% new alloy. Group V specimens were made of 100% recast alloy. Five specimens were made for each group of the alloy combinations. The test specimens were prepared by firing porcelain doughnuts on the alloy rod surface, and invested in dental stone. Bond strengths were measured by Instron universal testing machine at a crosshead speed of 0.5mm/min. The fractured surface of metal specimens were examined under the scanning electron microscope. The obtained results were as follows : 1. The shear bond strength of Albabond showed no significant difference between control group and reused alloy group. 2. The shear bond strength of reused alloy groups of nonprecious alloys were lower than that of control groups. 3. The shear bond strength between porcelain and metal in semiprecious alloy was higher than in nonprecious alloys 4. In nonprecious alloys. Rexillium III showed the highest bond strength value and Excelalloy showed the lowest shear bond strength value. 5. Regardless of the type of alloys and additional proportion of new alloys, scanning electron microscope photographs of the fracture surface between alloy and porcelain revealed simillar semiprecious alloy and nonprecious alloys.

  • PDF

SELF-ADHESION OF LOW-VISCOSITY COMPOSITES TO DENTIN SURFACE (상아질에 대한 저점도 복합레진의 자가접착에 관한 연구)

  • Cho, Tae-Hee;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.209-221
    • /
    • 2003
  • The objectiveness of this study was to evaluate whether low-viscosity composite can bond effectively to dentin surface without bonding resin. The low-viscosity composites being 50wt% filler content were made by the inclusion of bonding resin of two self-etching systems(Cleafil SE Bond, Unifil Bond) varied with contents as 0, 10, 20, 30, 40, 50wt%. Exposed dentin surfaces of extracted 3rd molars are used. Dentin bond strengths were measured. The tests were carried out with a micro-shear device placed testing machine at a CHS of 1mm/min after a low-viscosity composite was filled into an iris cut from micro tygon tubing with internal diameter approximately 0.8mm and height of 1.0mm. 1 Flexural strength and modulus was increased with the addition of bonding resin. 2. Micro-shear bond strength to dentin was improved according to content of bonding resin irrespective of applying or not bonding resin in bonding procedure, and that of Clearfil SE Bond groups was higher than Unifil Bond. 3. There were no significant difference whether use of each bonding resin in bonding procedure for S-40, S-50, U-50(p>0.05). 4. In SEM examination, resin was well infiltrated into dentin after primed with self-etching primer only for S-50 and U-50 in spite of the formation of thinner hybrid layer. Low viscosity composite including some functional monomer may be used as dentin bonding resin without an intermediary bonding agent. It makes a simplified bonding procedure and foresees the possibility of self-adhesive restorative material.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

A STUDY ON THE RELATIVE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO COMPOMERS (컴포머에 대한 복합레진의 전단결합강도에 관한 연구)

  • Jeong, Song-Ran;Choi, Nam-Ki;Yang, Kyu-Ho;Kim, Seon-Mi;Song, Ho-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.509-516
    • /
    • 2005
  • For the purpose of comparing the bond strengths of compomers to composite resin, composite Z250, and two polyacid modified composite resin, Dyract AP and F2000, were selected and investigated using universal testing machine for measuring the shear bond strengths. Additionally, the failure modes were examined by observing the fractured surfaces of each specimen. The following results were obtained. 1. The shear bond strength of Dyract AP to Z250 were higher than those of F2000, but there was no statistically significant difference between group 1 and group 3(p>0.05), and groups using fresh compomers showed higher bond strength than those using aged compomers(p<0.05). 2. After measuring the shear bond strength of each group, it was highest in group 5 and was lowest in group 9(p<0.05). 3. Although there was no statistically significant difference, groups treated with thermocycling showed lower bond strengths than those of non-thermocycling groups. 4. Overall compomer/composite resin failures were adhesive. Cohesive failures occurred mainly in groups using bonding agent. Based on these results, the application of a bonding agent on fresh polyacid-modified resin composite increases the bond strength between polyacid-modified resin composite and composite resin. Additionally, the surface of aged polyacid-modified resin composite has to be roughened mechanically and a bonding agent has to be used in combination with composite resin.

  • PDF

EFFECT OF THE EXPONENTIAL CURING OF COMPOSITE RESIN ON THE MICROTENSILE DENTIN BOND STRENGTH OF ADHESIVES (복합레진의 exponential 중합법이 상아질접착제의 미세인장접착강도에 미치는 영향)

  • Seong, So-Rae;Seo, Duck-kyu;Lee, In-Bog;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.125-133
    • /
    • 2010
  • Objectives: Rapid polymerization of overlying composite resin causes high polymerization shrinkage stress at the adhesive layer. In order to alleviate the shrinkage stress, increasing the light intensity over the first 5 seconds was suggested as an exponential curing mode by an LED light curing unit (Elipar FreeLight2, 3M ESPE). In this study, the effectiveness of the exponential curing mode on reducing stress was evaluated with measuring microtensile bond strength of three adhesives after the overlying composite resin was polymerized with either continuous or exponential curing mode. Methods: Scotchbond Multipurpose Plus (MP, 3M ESPE), Single Bond 2 (SB, 3M ESPE), and Adper Prompt (AP, 3M ESPE) were applied onto the flat occlusal dentin of extracted human molar. The overlying hybrid composite (Denfil, Vericom, Korea) was cured under one of two exposing modes of the curing unit. At 48h from bonding, microtensile bond strength was measured at a crosshead speed of 1.0 mm/min. The fractured surfaces were observed under FE-SEM. Results: There was no statistically significant difference in the microtensile bond strengths of each adhesive between curing methods (Two-way ANOVA, p > 0.05). The microtensile bond strengths of MP and SB were significantly higher than that of AP (p < 0.05). Mixed failures were observed in most of the fractured surfaces, and differences in the failure mode were not observed among groups. Conclusion: The exponential curing method had no beneficial effect on the microtensile dentin bond strengths of three adhesives compared to continuous curing method.

THE INFLUENCE OF $CARISOLV^{TM}$ ON SHEAR BOND STRENGTH OF COMPOSITE RESIN RESTORATIONS ($Carisolv^{TM}$의 사용이 복합레진 수복물의 전단결합강도에 미치는 영향)

  • Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • This study evaluated the influence of chemomechanical caries removal agent $Carisolv^{TM}$(MediTeam, Sweden) for composite resin adhesion to sound human permanent and primary dentin. The buccal/labial surfaces of 80 permanent molars and 80 primary incisors were used. Four types of adhesives and one composite resin were used; AQ Bond(Sun Medical, Japan), Clearfil SE Bond(Kuraray, Japan), Single Bond(3M, USA), Scotchbond Multi-Purpose(3M, USA) and Z100(3M, USA). One drop of $Carisolv^{TM}$(MediTeam, Sweden) was pretreated on the dentin for 0 second(control) and 60 seconds. The specimens were thermocycled for 1,000 times in baths kept 5 degrees C and 55 degrees C with a 30 seconds dwell time. Shear bond strengths were tested and the data was statistically analyzed using one-way ANOVA with subsequent post hoc Scheffe test at p<0.05. $Carisolv^{TM}$ treatment significantly decreased the shear bond strength. Shear bond strength of permanent dentin was significantly higher than that of primary dentin. Clearfil SE Bond treatment groups showed the highest shear bond strength and AQ Bond treatment groups showed the lowest shear bond strength.

  • PDF

Effect of Blood Contamination on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials (혈액오염이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향)

  • Park, Misun;Kim, Jaehwan;Choi, Namki;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • The aim of this study was to evaluate the effect of blood contamination on the push-out bond strength and surface morphology of tricalcium silicate materials; Biodentine$^{(R)}$, Theracal$^{(R)}$ and mineral trioxide aggregate. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and mineral trioxide aggregate by manufacturer's instruction. The specimens were randomly divided into 2 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; control group (phosphate buffered saline solution) and experimental group (fetal bovine serum). The push-out bond strengths were then measured by a universal testing machine and the surface morphology of each experimental group was analyzed by scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with mineral trioxide aggregate after exposure to fetal bovine serum. A substantial change in the surface morphology of each material was observed after exposure to fetal bovine serum. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ were higher than mineral trioxide aggregate when exposed to blood contamination. Therefore, it is supposed that the use of Biodentine$^{(R)}$ and Theracal$^{(R)}$ is appropriate in the presence of blood.

EFFECTS OF ACID TREATMENT OF FLUORIDE APPLIED DENTIN SURFACE ON DENTIN BONDING (불소도포한 상아질면의 산처리가 상아질접착에 미치는 영향)

  • Hwang, Hea-Kyung;Ahn, Sik-Hwan;Kim, Sung-Kyo;Jo, Kwang-Hun;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.602-618
    • /
    • 1996
  • The purpose of this study was to investigate the effect of acid treatment of fluoride applied dentin surface with various concentrations of phosphoric acid for various periods of time on dentin bonding. Dentin specimens prepared from freshly extracted bovine mandibular anterior teeth were divided into fluoridated and nonfluoridated groups. Specimens of nonfluoridated group were pretreated with 10% phosphoric acid for 15 seconds. Those of fluoridated groups were treated with 2% sodium fluoride or 2% stannous fluoride solution for 5 minutes and stored in $37^{\circ}C$ distilled water for 3 days, followed by phosphoric acid treatment. The concentrations of phosphoric acid were 10%, 32% or 50% and the treatment periods of time were 15, 30 or 60 seconds. All the specimens were bonded with All Bond$^{(R)}$ 2 and Bisfil$^{TM}$ composite resin. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, tensile bond strengths of each specimens were measured and the pretreated dentin and the fractured dentin surfaces were examined under the scanning electron microscope. The results were as follows : The tensile bond strengths from the fluoridated groups were significantly lower than those from the nonfluoridated group when the concentrations of phosphoric acid and the treatment periods of time were equal in all the groups (p<0.05). In general, the higher the concentration of phosphoric acid and the longer the treatment period of time for acid etching on the fluoride applied dentin surface, the higher were the bond strength values. Recovery of bond strength of the dentin bonding agent was better in the NaF applied group than in the $SnF_2$ applied one. SEM findings of NaF applied and $SnF_2$ applied dentin surfaces demonstrated reaction product-covered and partially or completely obstructed dentinal tubules. SEM findings of dentin surfaces fluoridated for 5 minutes followed by etching showed wider tubular openings and more clean dentin surfaces when dentin was etched with higher concentration of phosphoric acid for longer period of time. On the SEM observations of the fractured dentin-resin interface, the etched specimens of fluoridated group showed an adhesive failure mode when the concentration of phosphoric acid and the treatment period of time were same as in the nonfluoridated group. As the concentration of phosphoric acid and the treatment period of time increase during acid etching, the cohesive failure area increased. However, excessive acid etching caused adhesive failure.

  • PDF